設(shè)x,y,z為空間不同的直線或不同的平面,且直線不在平面內(nèi),下列說法中能保證“若x⊥z,y⊥z,則x∥y”為真命題的序號有
 
.(把所有的真命題全填上)
①x為直線,y,z為平面;
②x,y,z都為平面;
③x,y為直線,z為平面;
④x,y,z都為直線;
⑤x,y為平面,z為直線.
考點:命題的真假判斷與應(yīng)用
專題:壓軸題,簡易邏輯
分析:依據(jù)線面、面面平行和垂直的判斷和性質(zhì)定理,逐一判定5個命題得答案.
解答: 解:①中x⊥平面z,平面y⊥平面z,
∴x∥平面y或x?平面y.
又∵x?平面y,故x∥y成立;
②中若x,y,z均為平面,則x可與y相交,故②不成立;
③x⊥z,y⊥z,x,y為不同直線,故x∥y成立;
④x,y,z均為直線可異面垂直,故④不成立;
⑤z⊥x,z⊥y,z為直線,x,y為平面可得x∥y,⑤成立.
故答案為:①③⑤.
點評:本題考查空間直線與平面的位置關(guān)系,平面與平面的位置關(guān)系,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

A={y|y=x2-2x-3,x∈[0,3]},B={x|x>m},且A⊆B,則m的范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別是F1和F2,離心率e=
2
2
,且a2=2c.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點F1的直線l與該橢圓相交于M、N兩點,且|
F2M
+
F2N
|=
2
26
3
,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“sinθ•cosθ>0”是“θ是第一象限角”的( 。
A、充分必要條件
B、充分非必要條件
C、必要非充分條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-px+q,其中p>0,q>0.
(1)當(dāng)p>q時,證明
f(q)
p
f(p)
q
;
(2)若f(x)=0在區(qū)間,(0,1],(1,2]內(nèi)各有一個根,求p+q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
y≤x
x+y≥2
y≥3x-6
,則目標(biāo)函數(shù)z=2x+y的最大值與最小值之差為(  )
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=[x2+(1-t)x+1]e-x(t∈R,e是自然對數(shù)的底).
(Ⅰ)若對于任意x∈(0,1),曲線y=f(x)恒在直線y=x上方,求實數(shù)t的最大值;
(Ⅱ)是否存在實數(shù)a,b,c∈[0,1],使得f(a)+f(b)<f(c)?若存在,求出t的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=sin(
1
2
x+φ)(|φ|<
π
2
)的圖象(部分)如圖,則φ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角邊長為1,的等腰直角三角形ABC中,D為斜邊AB的中點,則
CD
CA
等于(  )
A、
1
4
B、
2
2
C、
1
2
D、1

查看答案和解析>>

同步練習(xí)冊答案