精英家教網 > 高中數學 > 題目詳情
已知集合A={x|ax2+2x+3=0,a∈R,x∈R}.B={x|x2-2x-3=0},
(1)若A中只有一個元素,求a的值,并求出這個元素;
(2)若A∩B=A,求a的取值范圍.
(1)當a=0時,A={x|2x+3=0,x∈R}={-
3
2
},適合題意;
當a≠0時,△=4-12a=0,得a=
1
3
,A={-3}.故所求a的值為0這個元素為-
3
2
,或
1
3
這個元素是-3.
(2)B={-1,3},由A∩B=A得A⊆B,
當△=4-12a<0,即a>
1
3
時,A=Φ,A∩B=A成立;
當A中只有一個元素時,由(1)可知A⊆B不成立;
當A中只有二個元素時,A=B={-1,3},故-1+3=-
1
a
,解得a=-1.
綜上所述,所求a的值為a>
1
3
或a=-1.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知集合A={x|x2+2x-3<0},B={x|
x+2x-3
<0}

(1)在區(qū)間(-4,4)上任取一個實數x,求“x∈A∩B”的概率;
(2)設(a,b)為有序實數對,其中a是從集合A中任取的一個整數,b是從集合B中任取的一個整數,求“b-a∈A∪B”的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|x>2,集合B={x|x>3},以下命題正確的個數是( 。
①?x0∈A,x0∉B                 ②?x0∈B,x0∉A ③?x∈A都有x∈B               ④?x∈B都有x∈A.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x||1-
x-13
|>2,x∈R}
,集合B={x|x2-2x+1-m2>0,m<0,x∈R},全集I=R,若“x∈A”是“x∈B”充分非必要條件,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2003•海淀區(qū)一模)已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},則能使A?B成立的實數a的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|x2+3x-4<0},B={x|
x+2x-4
<0
}.
(1)在區(qū)間(-4,5)上任取一個實數x,求“x∈A∩B”的概率;
(2)設(a,b)為有序實數對,其中a,b分別是集合A,B中任取的一個整數,求“a-b∈A∪B”的概率.

查看答案和解析>>

同步練習冊答案