13.?dāng)?shù)列{an}的前n項和為Sn,2Sn+an=n2+2n+2,n∈N*
(Ⅰ)證明:{an-n}是等比數(shù)列,并求{an}的通項公式;
(Ⅱ)設(shè)Tn為數(shù)列{n(an-n)}的前n項和,求證:Tn$<\frac{3}{2}$.

分析 (Ⅰ)通過2Sn+an=n2+2n+2與2Sn-1+an-1=(n-1)2+2(n-1)+2作差,進而整理可知3an-3n=an-1-(n-1),計算即得結(jié)論;
(Ⅱ)通過(I)可知n(an-n)=2n•$\frac{1}{{3}^{n}}$,進而利用錯位相減法計算、放縮即得結(jié)論.

解答 證明:(Ⅰ)∵2Sn+an=n2+2n+2,
∴當(dāng)n≥2時,2Sn-1+an-1=(n-1)2+2(n-1)+2,
兩式相減得:2an+an-an-1=2n+1,即3an=an-1+2n+1,
變形得:3an-3n=an-1-(n-1),
∴數(shù)列{an-n}是公比為$\frac{1}{3}$的等比數(shù)列,
又∵2S1+a1=12+2+2,即a1=$\frac{5}{3}$,a1-1=$\frac{2}{3}$,
∴an-n=$\frac{2}{3}$•$\frac{1}{{3}^{n-1}}$=2•$\frac{1}{{3}^{n}}$,
∴an=n+2•$\frac{1}{{3}^{n}}$;
(Ⅱ)由(I)可知n(an-n)=2n•$\frac{1}{{3}^{n}}$,
∴Tn=2•1•$\frac{1}{3}$+2•2•$\frac{1}{{3}^{2}}$+2•3•$\frac{1}{{3}^{3}}$+…+2n•$\frac{1}{{3}^{n}}$,
$\frac{1}{3}$Tn=2•1•$\frac{1}{{3}^{2}}$+2•2•$\frac{1}{{3}^{3}}$+…+2(n-1)•$\frac{1}{{3}^{n}}$+2n•$\frac{1}{{3}^{n+1}}$,
兩式相減得:$\frac{2}{3}$Tn=2($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$)-2n•$\frac{1}{{3}^{n+1}}$,
∴Tn=1+$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n-1}}$-n•$\frac{1}{{3}^{n}}$
=$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$-n•$\frac{1}{{3}^{n}}$
=$\frac{3}{2}$-(n+$\frac{3}{2}$)•$\frac{1}{{3}^{n}}$
$<\frac{3}{2}$.

點評 本題考查數(shù)列的通項及前n項和,考查錯位相減法,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在半徑為R的圓形鐵皮上截取一塊矩形,并將其卷成一個圓柱,求圓柱體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè){an}n≥1是由遞推公式an+1=aan+ban-1確定的數(shù)列,α,β是方程x2-ax-b=0的兩個不同實根.
(1)證明:an=c1αn+c2βn是數(shù)列{an}的通項公式,這里c1,c2∈R是與a,b有關(guān)的待定系數(shù);
(2)當(dāng)a,b,a1,a2都為1時,具體求出數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.冪函數(shù)y=f(x)的圖象經(jīng)過點(2,4),則f(x)的解析式為( 。
A.f(x)=2xB.f(x)=x2C.f(x)=2xD.f(x)=log2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“?x≥1,x2≥1”的否定是( 。
A.“?x≥1,x2<1”B.“?x<1,x2≥1”C.“?x0<1,x2≥1”D.“?x0≥1,x2<1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若m為實數(shù)且(2+mi)(m-2i)=-4-3i,則m=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.三棱錐S-ABC的棱長都相等,E,F(xiàn)是棱SC上的點,若SE=$\frac{1}{3}$SC,SF=$\frac{2}{3}$SC,則AE與BF所成角的余弦值為$\frac{17}{52}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和Sn滿足關(guān)系式:
Sn=($\frac{1+{a}_{n}}{2}$)2且an>0.
(1)寫出Sn與Sn-1(n≥2)的遞推關(guān)系式,并求出Sn關(guān)于n的表達式;
(2)若bn=(-1)n•Sn(n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,a1=1,求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案