【題目】已知f(x)=e2x , g(x)=lnx+ ,對a∈R,b∈(0,+∞),使得f(a)=g(b),則b﹣a的最小值為

【答案】1+ ln2
【解析】解:∵f(x)=e2x , g(x)=lnx+ , ∴f1(x)= lnx,g1(x)=
令h(x)=g1(x)﹣f1(x)= lnx,
則b﹣a的最小值,即為h(x)的最小值,
∵h′(x)=
令h′(x)=0,解得x=
∵當x∈(0, )時,h′(x)<0,當x∈( ,+∞)時,h′(x)>0,
故當x= 時,h(x)取最小值1﹣ ln =1+ ln2,
所以答案是:1+ ln2
【考點精析】本題主要考查了函數(shù)的最值及其幾何意義的相關(guān)知識點,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量m (sin ,1), =(1, cos ),函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)若f(α﹣ )= ,求f(2α+ )的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐 的底面 為正方形, ⊥底面 , 分別是 的中點, .

(Ⅰ)求證 ∥平面 ;
(Ⅱ)求直線 與平面 所成的角;
(Ⅲ)求四棱錐 的外接球的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為 ,且經(jīng)過點 是橢圓的左、右焦點.
(1)求橢圓 的方程;
(2)點 在橢圓上運動,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某化工廠擬建一個下部為圓柱,上部為半球的容器(如圖圓柱高為 ,半徑為 ,不計厚度,單位:米),按計劃容積為 立方米,且 ,假設(shè)建造費用僅與表面積有關(guān)(圓柱底部不計 ),已知圓柱部分每平方米的費用為2千元,半球部分每平方米的費用為2千元,設(shè)該容器的建造費用為y千元.

(1)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
(2)求建造費用最小時的 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣alnx+x(a∈R)
(Ⅰ)當a=1時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(Ⅱ)討論函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的部分圖象如圖所示.

(1)求函數(shù)的解析式;

(2)將的圖象向左平移個單位長度得到的圖象,若圖象的一個對稱軸為,求的最小值;

(3)在第(2)問的前提下,求函數(shù)上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)=|ax﹣1|.
(Ⅰ)若f(x)≤2的解集為[﹣6,2],求實數(shù)a的值;
(Ⅱ)當a=2時,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從6名男生和4名女生中任選4人參加比賽,設(shè)被選中女生的人數(shù)為隨機變量ξ,
求(Ⅰ)ξ的分布列;
(Ⅱ)所選女生不少于2人的概率.

查看答案和解析>>

同步練習冊答案