【題目】已知函數(shù),以下關于的結論其中正確的結論是( )
①當時,在上無零點;
②當時,在上單調遞增;
③當時,在上有無數(shù)個極值點;
④當時,在上恒成立.
A.①④B.②③C.①②④D.②③④
【答案】D
【解析】
根據(jù)零點存在性定理,可判斷①;通過求導,判斷符號以及零點的個數(shù),可判斷②③;利用導數(shù)結合不等式性質可判斷④,即可得出結論.
對于①:當時,,
,
在存在零點,所以①錯誤;
對于②:當時,,
,
當時,,
當,
當,恒成立,
故在上單調遞增,故②正確
對于③:當時,,
,
令,得,
畫出和作出如圖,
當時,,
和在有無數(shù)個交點,
交點的橫坐標為的極值點,
故此時,在上有無數(shù)個極值點;故③正確
對于④:當時,,
當時,,
令,得,
所以單調遞減,故當時,,
當時,
當時,,進一步分析,
當時,,
對于,得,單調遞增,
且單調遞減,
單調遞增,
時,取得極小值,也是最小為,
,
在上恒大于0,即,
當,
,在時有,故單調遞增,
且,所以,
所以,
綜上,當時,在上恒成立,故④正確
故答案為:D
科目:高中數(shù)學 來源: 題型:
【題目】
已知拋物線的焦點為,為上異于原點的任意一點,過點的直線交于另一點,交軸的正半軸于點,且有.當點的橫坐標為時,為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且和有且只有一個公共點,
(ⅰ)證明直線過定點,并求出定點坐標;
(ⅱ)的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,橢圓上的點到左焦點的距離的最大值為.
(1)求橢圓的標準方程;
(2)已知直線與橢圓交于、兩點.在軸上是否存在點,使得且,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點為橢圓:的右焦點,過的直線與橢圓交于、兩點,線段的中點為.
(1)求橢圓的方程;
(2)若直線、斜率的乘積為,兩直線,分別與橢圓交于、、、四點,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓,如圖,C1,C2分別交x軸正半軸于點E,A.射線OD分別交C1,C2于點B,D,動點P滿足直線BP與y軸垂直,直線DP與x軸垂直.
(1)求動點P的軌跡C的方程;
(2)過點E作直線l交曲線C與點M,N,射線OH⊥l與點H,且交曲線C于點Q.問:的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某機械零件的幾何結構,該幾何體是由兩個相同的直四棱柱組合而成的,且前后、左右、上下均對稱,每個四棱柱的底面都是邊長為2的正方形,高為4,且兩個四棱柱的側棱互相垂直.則這個幾何體有________個面,其體積為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與函數(shù)()的圖象相交,將其中三個相鄰交點從左到右依次記為A,B,C,且滿足有下列結論:
①n的值可能為2
②當,且時,的圖象可能關于直線對稱
③當時,有且僅有一個實數(shù)ω,使得在上單調遞增;
④不等式恒成立
其中所有正確結論的編號為( )
A.③B.①②C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,圖(a)、圖(b)是邊長為的兩塊正方形鋼板,現(xiàn)要將圖(a)裁剪焊接成一個正四棱柱,將圖(b)裁剪焊接成一個正四棱錐,使它們的全面積都等于這個正方形的面積(不計焊接縫的面積).
(1)將裁剪方法用虛線標示在圖中,并作簡要說明;
(2)比較所制成的正四棱柱和正四棱錐體積大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,由經(jīng)過伸縮變換得到曲線,以原點為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程以及曲線的直角坐標方程;
(2)若直線的極坐標方程為,與曲線、曲線在第一象限交于、,且,點的極坐標為,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com