【題目】已知圓,圓,如圖,C1,C2分別交x軸正半軸于點(diǎn)E,A.射線OD分別交C1,C2于點(diǎn)B,D,動(dòng)點(diǎn)P滿足直線BP與y軸垂直,直線DP與x軸垂直.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)E作直線l交曲線C與點(diǎn)M,N,射線OH⊥l與點(diǎn)H,且交曲線C于點(diǎn)Q.問:的值是否是定值?如果是定值,請(qǐng)求出該定值;如果不是定值,請(qǐng)說明理由.
【答案】(1);(2)為定值,且為.
【解析】
(1)設(shè),根據(jù)圓的方程求出的坐標(biāo),進(jìn)而可得,,然后得出動(dòng)點(diǎn)P的軌跡C的方程.
(2)設(shè)出直線l的方程為,聯(lián)立直線與橢圓的方程,利用韋達(dá)定理,結(jié)合弦長公式,轉(zhuǎn)化求解即可.
(1)設(shè),則,,
所以,,
所以動(dòng)點(diǎn)的軌跡C的方程為.
(2)由(1)可知E為C的焦點(diǎn),設(shè)直線l的方程為(斜率不為0時(shí)),
且設(shè)點(diǎn)M(x1,y1),N(x2,y2),由,
得,
所以,所以,
又射線OQ方程為y=﹣mx,代入橢圓C的方程得x2+2(my)2=4,
即,
又當(dāng)直線l的斜率為0時(shí),也符合條件.
綜上,為定值,且為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓C與兩圓,中的一個(gè)內(nèi)切,另一個(gè)外切.
(1)求C的圓心軌跡L的方程;
(2)已知點(diǎn),,且P為L上動(dòng)點(diǎn),求的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】輥?zhàn)邮强图覀鹘y(tǒng)農(nóng)具,南方農(nóng)民犁開田地后,仍有大的土塊.農(nóng)人便用六片葉齒組成輥軸,兩側(cè)裝上木板,人跨開兩腳站立,既能掌握平衡,又能增加重量,讓牛拉動(dòng)輥軸前進(jìn),壓碎土塊,以利于耕種.這六片葉齒又對(duì)應(yīng)著菩薩六度,即布施持戒忍辱精進(jìn)禪定與般若.若甲乙每人依次有放回地從這六片葉齒中隨機(jī)取一片,則這兩人選的葉齒對(duì)應(yīng)的“度”相同的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為橢圓:的右焦點(diǎn),過的直線與橢圓交于、兩點(diǎn),線段的中點(diǎn)為.
(1)求橢圓的方程;
(2)若直線、斜率的乘積為,兩直線,分別與橢圓交于、、、四點(diǎn),求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若點(diǎn)在直線上,且,求直線的斜率;
(2)若,求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),以下關(guān)于的結(jié)論其中正確的結(jié)論是( )
①當(dāng)時(shí),在上無零點(diǎn);
②當(dāng)時(shí),在上單調(diào)遞增;
③當(dāng)時(shí),在上有無數(shù)個(gè)極值點(diǎn);
④當(dāng)時(shí),在上恒成立.
A.①④B.②③C.①②④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面多邊形中,,,,,,為的中點(diǎn),現(xiàn)將三角形沿折起,使.
(1)證明:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的某種產(chǎn)品成箱包裝,每箱20件,每一箱產(chǎn)品在交付用戶時(shí),用戶要對(duì)該箱中部分產(chǎn)品作檢驗(yàn).設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否合格相互獨(dú)立.
(1)記某一箱20件產(chǎn)品中恰有2件不合格品的概率為,取最大值時(shí)對(duì)應(yīng)的產(chǎn)品為不合格品概率為,求;
(2)現(xiàn)從某一箱產(chǎn)品中抽取3件產(chǎn)品進(jìn)行檢驗(yàn),以(1)中確定的作為p的值,已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為10元,若檢驗(yàn)出不合格品,則工廠要對(duì)每件不合格品支付30元的賠償費(fèi)用,檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,①已知點(diǎn),直線,動(dòng)點(diǎn)P滿足到點(diǎn)Q的距離與到直線的距離之比為.②已知點(diǎn)是圓上一個(gè)動(dòng)點(diǎn),線段HG的垂直平分線交GE于P.③點(diǎn)分別在軸,y軸上運(yùn)動(dòng),且,動(dòng)點(diǎn)P滿足.
(1)在①,②,③這三個(gè)條件中任選一個(gè),求動(dòng)點(diǎn)P的軌跡C的方程;
(注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分)
(2)設(shè)圓上任意一點(diǎn)A處的切線交軌跡C于M,N兩點(diǎn),試判斷以MN為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)坐標(biāo).若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com