18.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠DAB=45°,PD⊥平面ABCD,PD=AD=1,點E為AB上一點,且$\frac{AE}{AB}$=k,0<k<1,點F為PD中點.
(1)若k=$\frac{1}{2}$,求證:AF∥平面PEC;
(2)是否存在一個常數(shù)k,使得三棱錐C-PEB的體積等于四棱錐P-ABCD的體積的$\frac{1}{3}$,若存在,求出k的值;若不存在,說明理由.

分析 (1)作FM∥CD交PC于M,證明四邊形AEMF為平行四邊形,得到AF∥EM,利用直線與平面平行的判定定理證明直線AF∥平面PEC.
(2)通過求解VC-PEB=VP-CEB,VP-ABCD,列出方程即可求解常數(shù)k.

解答 (1)證明:作FM∥CD交PC于M.∴FM∥AE…(1分)
∵點F為PD中點,∴FM=$\frac{1}{2}$CD.∵k=$\frac{1}{2}$,∴AE=$\frac{1}{2}$AB=FM,
∴AEMF為平行四邊形,…(2分)
∴AF∥EM,…(3分)
∵AF?平面PEC,EM?平面PEC,
∴直線AF∥平面PEC.…(5分)
(2)解:VC-PEB=VP-CEB=$\frac{1}{3}×\frac{1}{2}(1-k)×1×\frac{\sqrt{2}}{2}×1$=$\frac{\sqrt{2}}{12}(1-k)$ …(7分)
${V}_{P-ABCD}=\frac{1}{3}×1×1×\frac{\sqrt{2}}{2}×1$=$\frac{\sqrt{2}}{6}$…(9分)
$\frac{\sqrt{2}}{12}(1-k)=\frac{1}{3}×\frac{\sqrt{2}}{6}$…(10分)
所以存在常數(shù)k=$\frac{1}{3}$…(12分)

點評 本題考查幾何體的體積的求法,直線與平面平行的判定定理的應(yīng)用,考查空間想象能力以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=|x-2|+2|x+1|.
(1)求函數(shù)y=f(x)的最小值;
(2)已知x1,x2∈R,求證:3f($\frac{{x}_{1}+2{x}_{2}}{3}$)≤f(x1)+2f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{e}^{x}}{x-ae}$在(2e+1,f(2e+1))處的切線平行于x軸,其中e是自然對數(shù)的底數(shù).
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)求證:f(2e+1)•f(2e+2)…f(2e+n)>e2ne•(n+1),其中n是正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線C1的極坐標(biāo)方程為ρ=2cosθ,直線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù)).曲線C1與直線C2相交于A,B兩點.
(Ⅰ)求|AB|的值;
(Ⅱ)求曲線C1上的點到直線C2的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知直線y=2$\sqrt{2}$(x-1)與拋物線C:y2=4x交于A,B兩點,點M(-1,m),若$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,則m=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對定義在[0,1]上,并且同時滿足以下兩個條件的函數(shù)f(x)稱為M函數(shù):
(i) 對任意的x∈[0,1],恒有f(x)≥0;
(ii) 當(dāng)x1≥0,x2≥0,x1+x2≤1時,總有f(x1+x2)≥f(x1)+f(x2)成立.
則下列四個函數(shù)中不是M函數(shù)的個數(shù)是( 。
①f(x)=x2②f(x)=x2+1
③f(x)=ln(x2+1)④f(x)=2x-1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=x2|x-a|在區(qū)間[0,2]上單調(diào)遞增,則實數(shù)a的取值范圍a≤0或a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a∈[0,1),當(dāng)x,y滿足$\left\{\begin{array}{l}{x-ay-2≤0}\\{x-y+1≥0}\\{2x+y-4≥0}\end{array}\right.$時,z=x+y的最小值為( 。
A.4B.3C.2D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,設(shè)點D到定直線AB的距離DE=a(a>0),過點D與直線AB相切的動圓圓心為C.
(1)試判定動點C的軌跡,
(2)已知過點D的直線l交動點C的軌跡于兩點P,Q,且$\overrightarrow{DP}•\overrightarrow{DQ}$的最大值等于-4,求a的值.

查看答案和解析>>

同步練習(xí)冊答案