12.設(shè)兩個非零向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=0,且2|$\overrightarrow{a}$|=|$\overrightarrow$|=2,則|2$\overrightarrow{a}$-$\overrightarrow$|=(  )
A.2$\sqrt{3}$B.2C.4D.8

分析 根據(jù)向量的數(shù)量積的運(yùn)算和向量的模的計(jì)算即可.

解答 解:$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=0,且2|$\overrightarrow{a}$|=|$\overrightarrow$|=2,
∴${\overrightarrow{a}}^{2}$-$\overrightarrow{a}$•$\overrightarrow$=0,
∴$\overrightarrow{a}•\overrightarrow$=1,
∴|2$\overrightarrow{a}$-$\overrightarrow$|2=4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$=4-4+4=4,
∴|2$\overrightarrow{a}$-$\overrightarrow$|=2,
故選:B

點(diǎn)評 本題考查了向量的數(shù)量積的運(yùn)算和向量的模的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.證明:若點(diǎn)O是△ABC的內(nèi)心,則sinA$\overrightarrow{OA}$+sinB$\overrightarrow{OB}$+sinC$\overrightarrow{OC}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)?shù)列{an}滿足:a1=-9,an+1-an=2,Sn是其前n項(xiàng)和,則S10=( 。
A.0B.-9C.10D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=2a2lnx-x2,g(x)=-x2+2a3x+$\frac{{2{a^2}}}{x},({a>0})$.
(1)討論函數(shù)f(x)在(1,e2)上零點(diǎn)的個數(shù);
(2)若h(x)=f(x)-g(x)有兩個不同的零點(diǎn)x1,x2,求證:x1•x2>2e2.(參考數(shù)據(jù):e取2.8,ln2取0.7,$\sqrt{2}$取1.4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.三棱錐A-BCD中,DA⊥AC,DB⊥BC,DA=AC,DB=BC,AB=$\frac{{\sqrt{2}}}{2}$CD,若三棱錐A-BCD的體積為$\frac{{2\sqrt{2}}}{3}$,則CD的長為( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=ex+a+x,g(x)=ln(x+3)-4e-x-a,其中e為自然對數(shù)的底數(shù),若存在實(shí)數(shù)x0,使得f(x0)-g(x0)=2成立,則實(shí)數(shù)a值為(  )
A.-2+ln2B.1+ln2C.-1-ln2D.2+ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,值域?yàn)閇0,+∞)的偶函數(shù)是( 。
A.y=x2-1B.y=|x|C.y=lgxD.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.二項(xiàng)式($\root{3}{x}$-$\frac{1}{x}$)n的展開式中,所有項(xiàng)的二項(xiàng)式系數(shù)之和為4096,則常數(shù)項(xiàng)等于-220.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,菱形ABCD與等邊△PAD所在的平面相互垂直,AD=2,∠DAB=60°.
(Ⅰ)證明:AD⊥PB;
(Ⅱ)求三棱錐C-PAB的高.

查看答案和解析>>

同步練習(xí)冊答案