3.?dāng)?shù)列{an}滿足:a1=-9,an+1-an=2,Sn是其前n項(xiàng)和,則S10=(  )
A.0B.-9C.10D.-10

分析 通過條件可確定該數(shù)列為等差數(shù)列,進(jìn)而利用公式計(jì)算即得即可.

解答 解:∵a1=-9,an+1-an=2,
∴數(shù)列{an}是首項(xiàng)為-9,公差為2的等差數(shù)列,
∴S10=-9×10+$\frac{10×(10-1)}{2}$×2=0,
故選:A.

點(diǎn)評 本題考查等差數(shù)列的判定,考查等差數(shù)列的求和公式,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≤0}\\{2x-y≥0}\\{2x+y≤4}\end{array}}\right.$,z=x+y+3與z=x+ny取得最大值的最優(yōu)解相同,則實(shí)數(shù)n的取值范圍是( 。
A.{1}B.$({-∞,\frac{1}{2}})$C.$({\frac{1}{2},+∞})$D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-1(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,若函數(shù)g(x)=f(x)-ax+1有5個(gè)不同的零點(diǎn),則實(shí)數(shù)α的取值范圍是[$\frac{1}{5}$,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M為線段BF的中點(diǎn).
(1)求三棱錐M-CDE的體積;
(2)求證:DM⊥平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題“?x∈R,ax2+4x+1>0”是假命題,則實(shí)數(shù)a的取值范圍是(  )
A.(4,+∞)B.(0,4]C.(-∞,4]D.[0.4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)g(x)的導(dǎo)函數(shù)g'(x)=ex,且g(0)g'(1)=e,(其中e為自然對數(shù)的底數(shù)).若?x∈(0,+∞),使得不等式$g(x)<\frac{x-m+3}{{\sqrt{x}}}$成立,則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,1)B.(-∞,3)C.(3,+∞)D.(-∞,4-e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分別為棱PD,PC的中點(diǎn).求證:
(1)MN∥平面PAB
(2)AM⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)兩個(gè)非零向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=0,且2|$\overrightarrow{a}$|=|$\overrightarrow$|=2,則|2$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.2$\sqrt{3}$B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,五面體ABCDE中,四邊形ABDE是菱形,△ABC是邊長為2的正三角形,∠DBA=60°,$CD=\sqrt{3}$.
(1)證明:DC⊥AB;
(2)若點(diǎn)C在平面ABDE內(nèi)的射影H,求CH與平面BCD所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案