18.設(shè)100件產(chǎn)品中有70件一等品,25件二等品,規(guī)定一、二等品為合格品,從中任取1件,求:
(1)取得一等品的概率;
(2)已知取得的是合格品,求它是一等品的概率.

分析 (1)設(shè)事件A表示“取得合格品”,事件B表示“取得一等品”,由100件產(chǎn)品中有70件一等品,能求出取得一等品的概率.
(2)由已知得B?A,從而AB=B,由此利用條件概率公式能求出取得的是合格品,它是一等品的概率.

解答 解:(1)設(shè)事件A表示“取得合格品”,事件B表示“取得一等品”,
∵100件產(chǎn)品中有70件一等品,
∴P(B)=$\frac{70}{100}$=0.7.
(2)∵100件產(chǎn)品中有70件一等品,25件二等品,即95件合格品中有70件一等品,
∴B?A,∴AB=B,
∴取得的是合格品,它是一等品的概率:
p(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{\frac{70}{100}}{\frac{95}{100}}$=$\frac{14}{19}$.

點評 本題考查概率的求法,是中檔題,解題時要認(rèn)真審題,注意等可能事件概率計算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.過定點A(1,1)作直線l與雙曲線x2-$\frac{{y}^{2}}{2}$=1交于P、Q兩點,若A(1,1)是線段段PQ的中點,這樣的直線存在嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖的程序框圖,如果輸出結(jié)果為2,則輸入的x=( 。
A.0B.2C.4D.0或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{a{x}^{2}+x-a}{{x}^{2}-x+1}$,a∈R,求不等式f(x)>1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某游戲規(guī)則如下:隨機(jī)地往半徑為4的圓內(nèi)投擲飛標(biāo),若飛鏢到圓心的距離大于2,則成績?yōu)榧案瘢蝗麸w鏢到圓心的距離小于1,則成績?yōu)閮?yōu)秀;若飛鏢到圓心的距離大于或等于1且小于或等于2,則成績?yōu)榱己,那么在所有投擲到圓內(nèi)的飛鏢中得到成績?yōu)榱己玫母怕蕿椋ā 。?table class="qanwser">A.$\frac{1}{16}$B.$\frac{3}{16}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若f(x)=$\frac{\sqrt{{a}^{2}-{x}^{2}}}{|x+a|-a}$是奇函數(shù),則實數(shù)a的取值范圍為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知復(fù)數(shù)z=2-3i,$\overline{z}$表示復(fù)數(shù)z的共軛復(fù)數(shù),則|$\frac{\overline{z}}{i+{i}^{2}}$|=$\frac{\sqrt{26}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在等比數(shù)列{an}中,若a6-a5=567,a2-a1=7,則Sn=$\frac{7}{4}$(3n-1)或$\frac{7}{16}$((-3)n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)數(shù)列{an}的各項均為正整數(shù),其前n項和為Sn,我們稱滿足條件“對任意的m,n∈N*,均有(n-m)Sn+m=(n+m)(Sn-Sm)”的數(shù)列{an}為“L數(shù)列”.現(xiàn)已知數(shù)列{an}為“L數(shù)列”,且a2016=3000,則an=984+n或3000.

查看答案和解析>>

同步練習(xí)冊答案