8.過(guò)定點(diǎn)A(1,1)作直線l與雙曲線x2-$\frac{{y}^{2}}{2}$=1交于P、Q兩點(diǎn),若A(1,1)是線段段PQ的中點(diǎn),這樣的直線存在嗎?

分析 先假設(shè)存在這樣的直線l,分類(lèi)討論:斜率存在和斜率不存在設(shè)出直線l的方程,①當(dāng)k存在時(shí),與雙曲線方程聯(lián)立,消去y,得到關(guān)于x的一元二次方程,通過(guò)△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,可求k的范圍,再由A是線段PQ的中點(diǎn),則 $\frac{{x}_{1}+{x}_{2}}{2}$=1,可求k,看是否矛盾,②當(dāng)k不存在時(shí),直線經(jīng)過(guò)點(diǎn)B但不滿足條件,故符合條件的直線l不存在,綜合可求.

解答 解:設(shè)過(guò)點(diǎn)B(1,1)的直線方程為y=k(x-1)+1(當(dāng)k存在時(shí))或x=1(當(dāng)k不存在時(shí)).
①當(dāng)k存在時(shí),有$\left\{\begin{array}{l}{y=k(x-1)+1}\\{{x}^{2}-\frac{{y}^{2}}{2}=1}\end{array}\right.$,得(2-k2)x2+(2k2-2k)x-k2+2k-3=0 (1)
當(dāng)直線與雙曲線相交于兩個(gè)不同點(diǎn),則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,
∴k<$\frac{3}{2}$
設(shè)P(x1,y1),Q(x2,y2
∴x1+x2=$\frac{2(k-{k}^{2})}{2-{k}^{2}}$,又A(1,1)為線段PQ的中點(diǎn)
∴$\frac{{x}_{1}+{x}_{2}}{2}$=1,即$\frac{2(k-{k}^{2})}{2-{k}^{2}}$=1
∴k=2
當(dāng)k=2,使2-k2≠0但使△<0
因此當(dāng)k=2時(shí),方程(1)無(wú)實(shí)數(shù)解
故過(guò)點(diǎn)A(1,1)與雙曲線交于兩點(diǎn)P、Q且B為線段PQ中點(diǎn)的直線不存在.
②當(dāng)k不存在時(shí),即當(dāng)x=1時(shí),直線經(jīng)過(guò)點(diǎn)B,但不滿足條件,
綜上,符合條件的直線l不存在.

點(diǎn)評(píng) 本題考察了直線與雙曲線的位置關(guān)系,特別是相交時(shí)的中點(diǎn)弦問(wèn)題,方程的根與系數(shù)關(guān)系的應(yīng)用,及利用方程思想判斷直線與曲線位置關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,是某鐵路客運(yùn)部門(mén)設(shè)計(jì)的甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用c(單位:元)與行李重量w(單位:千克)之間的流程圖.假定某旅客的托運(yùn)費(fèi)為10元,則該旅客托運(yùn)的行李重量為20千克.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在二次項(xiàng)式(x-$\frac{2}{x}$)6的展開(kāi)式中,常數(shù)項(xiàng)的值是-160.(用具體數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知△ABC的三邊長(zhǎng)AC=6,BC=8,AB=10,P為AB邊上任意一點(diǎn),則$\overrightarrow{CP}$•($\overrightarrow{BA}-\overrightarrow{BC}$)的最大值為( 。
A.0B.36C.48D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知$\frac{2+i}{1+ai}$=i,其中i為虛數(shù)單位,a∈R,則a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,某測(cè)量人員,為了測(cè)量西江北岸不能到達(dá)的兩點(diǎn)A,B之間的距離,她在西江南岸找到一個(gè)點(diǎn)C,從C點(diǎn)可以觀察到點(diǎn)A,B;找到一個(gè)點(diǎn)D,從D點(diǎn)可以觀察到點(diǎn)A,C;找到一個(gè)點(diǎn)E,從E點(diǎn)可以觀察到點(diǎn)B,C;并測(cè)量得到數(shù)據(jù);
∠ACD=90°,∠ADC=60°,∠ACB=30°,∠BCE=105°,∠CEB=45°,DC=CE=2(百米).
(1)求△CDE的面積;
(2)求A,B之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的焦距為10,一條漸近線的斜率為2,則雙曲線的標(biāo)準(zhǔn)方程是( 。
A.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1B.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{80}$=1D.$\frac{{x}^{2}}{80}$-$\frac{{y}^{2}}{20}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)的定義域?yàn)镽,則“f(x)是奇函數(shù)”是“f(1)=-f(-1)”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)100件產(chǎn)品中有70件一等品,25件二等品,規(guī)定一、二等品為合格品,從中任取1件,求:
(1)取得一等品的概率;
(2)已知取得的是合格品,求它是一等品的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案