A. | [5,9] | B. | [5,$\frac{21}{4}$] | C. | [$\frac{21}{4}$,9] | D. | [6,10] |
分析 原函數(shù)變形得到$f(x)=(x+1)+\frac{9}{x+1}-1$,由基本不等式便可得出x=2時,f(x)≥5,這樣便可判斷f(x)在[0,3]上的單調(diào)性,從而得出f(x)在[0,3]上的最小、最大值,從而得出f(x)的值域.
解答 解:$f(x)=(x+1)+\frac{9}{x+1}-1≥5$,當且僅當$x+1=\frac{9}{x+1}$,即x=2時取“=”;
∴f(x)在[0,2]上單調(diào)遞減,在[2,3]上單調(diào)遞增;
又f(0)=9,f(3)=$\frac{21}{4}$;
∴f(x)在[0,3]上的最小值為5,最大值為9;
∴f(x)的值域為[5,9].
故選A.
點評 考查基本不等式在求函數(shù)最小值中的運用,應(yīng)用基本不等式注意判斷等號能否取到,函數(shù)值域的概念,根據(jù)函數(shù)單調(diào)性求函數(shù)值域的方法,要熟悉函數(shù)$y=x+\frac{1}{x}$的單調(diào)性.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{2}$+$\frac{4}{3}$ | B. | $\frac{π}{2}$+3 | C. | $\frac{π}{4}$+$\frac{4}{3}$ | D. | $\frac{π}{4}$+3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{34}$ | B. | 6 | C. | $4\sqrt{2}$ | D. | $3\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com