13.已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0
(1)設(shè)直線l與圓C交于A、B兩點(diǎn),若|AB|=$\sqrt{17}$,求直線l的傾斜角;
(2)求證:對(duì)m∈R,直線l與圓C恒有兩個(gè)交點(diǎn).

分析 (1)由已知圓的方程求出圓的半徑,結(jié)合垂徑定理得到圓心到直線的距離,再由點(diǎn)到直線的距離公式得答案;
(2)由已知得到圓心坐標(biāo)和半徑,再由點(diǎn)到直線的距離公式求出圓心到直線的距離,放縮可得圓心到直線的距離小于圓的半徑得答案.

解答 (1)解:由圓C:x2+(y-1)2=5,得半徑r=$\sqrt{5}$,
又|AB|=$\sqrt{17}$,∴圓心C(0,1)到直線l:mx-y+1-m=0的距離d=$\sqrt{(\sqrt{5})^{2}-(\frac{\sqrt{17}}{2})^{2}}=\frac{\sqrt{3}}{2}$.
由點(diǎn)到直線的距離公式得d=$\frac{|0-1+1-m|}{\sqrt{{m}^{2}+1}}=\frac{\sqrt{3}}{2}$,解得m=$±\sqrt{3}$.
∴直線的斜率等于$±\sqrt{3}$.
故直線的傾斜角為$\frac{π}{3}$或$\frac{2π}{3}$;
(2)證明:圓C:x2+(y-1)2=5的圓心C(0,1),半徑為$\sqrt{5}$,
圓心C到直線l:mx-y+1-m=0的距離d=$\frac{|-m|}{\sqrt{{m}^{2}+1}}<1<\sqrt{5}$.
∴直線l與圓C相交,即對(duì)?m∈R,直線l與圓C恒有兩個(gè)交點(diǎn).

點(diǎn)評(píng) 本題考查直線與圓位置關(guān)系的應(yīng)用,考查了點(diǎn)到直線的距離公式,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,在四棱錐A-BCDE中,AE⊥面BCDE,△BCE是正三角形,BD和CE的交點(diǎn)F恰好平分CE,又AE=BE=2,∠CDE=120°,
(Ⅰ)證明:面ABD⊥面AEC;
(Ⅱ)求二面角B-CA-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)關(guān)于x的方程k•9x-k•3x+1+6(k-5)=0在[0,2]內(nèi)有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)集合A={1,a,b},B={a,a2,ab},且A=B,求a2012+b2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=lnx-x2+x.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若在y軸右側(cè),函數(shù)h(x)=(a-1)x2+2ax-1的圖象都在函數(shù)f(x)圖象的上方,求整數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.“x>5”是式子lg(x2-4x-5)有意義的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.第17屆亞洲運(yùn)動(dòng)會(huì)于2014年9月19日--10月4日在韓國(guó)仁川舉行.現(xiàn)有5個(gè)人去觀看某日下午的比賽,根據(jù)組委會(huì)安排當(dāng)天下午有甲、乙兩場(chǎng)比賽,5人約定:每一個(gè)人通過(guò)一枚質(zhì)地均勻的骰子決定自己觀看哪場(chǎng)比賽,擲出點(diǎn)數(shù)為1或2的人去觀看甲場(chǎng)比賽,擲出點(diǎn)數(shù)大于2的人去觀看乙場(chǎng)比賽.
(1)求這5個(gè)人中恰有2人去觀看甲場(chǎng)比賽的概率;
(2)求這5個(gè)人中去觀看甲場(chǎng)比賽的人數(shù)大于去觀看乙場(chǎng)比賽的人數(shù)的概率;
(3)用X,Y分別表示這5個(gè)人中觀看甲、乙場(chǎng)比賽的人數(shù),記ξ=|X-Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)知集合M={x|x2-2x-3<0},N={x|1≤x≤6},則M∩N=( 。
A.(1,3]B.[1,3)C.[-1,1)D.(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知不等式|x2-3x-4|<2x+2的解集為{x|a<x<b}.
(Ⅰ)求a、b的值;
(Ⅱ)若m,n∈(-1,1),且mn=$\frac{a}$,S=$\frac{a}{{{m^2}-1}}$+$\frac{{3({{n^2}-1})}}$,求S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案