18.“x>5”是式子lg(x2-4x-5)有意義的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 由x2-4x-5>0,解得x范圍,即可判斷出結(jié)論.

解答 解:由x2-4x-5>0,解得x>5或x<-1.
∴“x>5”是式子lg(x2-4x-5)有意義的充分不必要條件.
故選:B.

點(diǎn)評(píng) 本題考查了不等式的解法、簡(jiǎn)易邏輯的判定方法、對(duì)數(shù)函數(shù)的定義域,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C的左、右焦點(diǎn)F1,F(xiàn)2在x軸上,左頂點(diǎn)為A,離心率e=$\frac{\sqrt{3}}{2}$,過(guò)原點(diǎn)O的直線(與x軸不重合)與橢圓C交于P,Q兩點(diǎn),直線PA,QA分別與y軸交于M,N兩點(diǎn),△PF1F2的周長(zhǎng)為8+4$\sqrt{3}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$的值;
(Ⅲ)求四邊形MF1NF2面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某生產(chǎn)線上,質(zhì)量監(jiān)督員甲在生產(chǎn)現(xiàn)場(chǎng)時(shí),990件產(chǎn)品中有合格品982件,次品8件;不在生產(chǎn)現(xiàn)場(chǎng)時(shí),510件產(chǎn)品中有合格品493件,次品17件,試?yán)脠D形判斷監(jiān)督員甲不在生產(chǎn)現(xiàn)場(chǎng)對(duì)產(chǎn)品質(zhì)量好壞有無(wú)影響.能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為質(zhì)量監(jiān)督員甲在不在生產(chǎn)現(xiàn)場(chǎng)與產(chǎn)品質(zhì)量好壞有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知集合A={1,2,3,4,5,6,7}.
(1)滿足{1,2,3}⊆B⊆A的集合B的個(gè)數(shù)是16;
(2)若C是A的含有4個(gè)元素的子集,且滿足對(duì)任意的x,x∈C,都滿足x+1∈C或x-1∈C,則集合C的個(gè)數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0
(1)設(shè)直線l與圓C交于A、B兩點(diǎn),若|AB|=$\sqrt{17}$,求直線l的傾斜角;
(2)求證:對(duì)m∈R,直線l與圓C恒有兩個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=ln(1+x)-x+x2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為3x-2y+2ln2-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.記Sk=1k+2k+3k+…+nk(n∈N*),當(dāng)k=1,2,3,…時(shí),觀察下列等式:
S1=$\frac{1}{2}$n2+$\frac{1}{2}$n,
S2=$\frac{1}{3}$n3+$\frac{1}{2}$n2+$\frac{1}{6}$n,
S3=$\frac{1}{4}$n4+$\frac{1}{2}$n3+$\frac{1}{4}$n2,
S4=$\frac{1}{5}$n5+$\frac{1}{2}$n4+An3-$\frac{1}{30}$n,
S5=$\frac{1}{6}$n6+$\frac{1}{2}$n5+$\frac{5}{12}$n4+Bn2
可以推測(cè),A+B=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列命題正確的是( 。
A.三條兩兩相交的直線一定在同一面內(nèi)
B.垂直于同一條直線的兩條直線一定平行
C.m,n是平面α內(nèi)的兩條相交直線,l1,l2是平面β內(nèi)的兩條相交直線,若m∥l1,n∥l2,則α∥β
D.α,β,η是三個(gè)不同的平面,若α⊥η,β⊥η,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}是等比數(shù)列,且滿足a1=3,b1=1,b2+S2=10,a5-2b2=a3,數(shù)列{${\frac{a_n}{b_n}}\right.$}的前n項(xiàng)和Tn,若Tn<M對(duì)一切正整數(shù)n都成立,則M的最小值為10.

查看答案和解析>>

同步練習(xí)冊(cè)答案