17.已知等差數(shù)列前10項(xiàng)和為100,第6項(xiàng)為11,求此數(shù)列的通項(xiàng)公式.

分析 設(shè)等差數(shù)列的首項(xiàng)為a1,公差為d,由題意列方程組求得首項(xiàng)和公差,則答案可求.

解答 解:設(shè)等差數(shù)列的首項(xiàng)為a1,公差為d,
由題意可得$\left\{\begin{array}{l}{10{a}_{1}+\frac{10×9}{2}d=100}\\{{a}_{1}+5d=11}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$.
∴an=1+2(n-1)=2n-1.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)和,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若a-b=2,a-c=$\frac{1}{2}$,則(b-c)2+3(b-c)+$\frac{9}{4}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.集合{x|0<|x-1|<3,x∈N}的真子集的個(gè)數(shù)有( 。
A.7個(gè)B.8個(gè)C.15個(gè)D.16個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1+a3=10,a3+a5=40,設(shè)bn=log2an,求數(shù){bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知數(shù)集A={a1,a2,…an}(1≤a1<a2<…<an,n≥2)具有性質(zhì)P:對(duì)任意的i,j(1≤i≤j≤n),aiaj與$\frac{{a}_{j}}{{a}_{i}}$兩數(shù)中至少有個(gè)屬于A,則稱(chēng)集合A為“權(quán)集”,則( 。
A.{1,3,4}為“權(quán)集”B.{1,2,3,6}為“權(quán)集”
C.“權(quán)集”中元素可以有0D.“權(quán)集”中一定有元素1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.利用導(dǎo)數(shù)定義求函數(shù)y=$\sqrt{{x}^{2}+1}$在x=x0處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.若a2+ab-b2=0,且a、b均為正數(shù),化簡(jiǎn):$\frac{{a}^{2}-^{2}}{(b-a)(b-2a)}$+$\frac{2{a}^{2}-ab}{4{a}^{2}-4ab+^{2}}$•$\frac{2a+b}{2a-b}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知在數(shù)列{an}中,設(shè)a1為首項(xiàng),其前n項(xiàng)和為Sn,若對(duì)任意的正整數(shù)m,n都有不等式S2m+S2n<2Sm+n(m≠n)恒成立,且2S6<S3
(1)設(shè)數(shù)列{an}為等差數(shù)列,且公差為d,求$\frac{{a}_{1}}hxlvhxl$的取值范圍;
(2)設(shè)數(shù)列{an}為等比數(shù)列,且公比為q(q>0且q≠1),求a1•q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.等差數(shù)列{an}中,已知a1=$\frac{4}{5}$,a3+a6=3,an=11,則n等于( 。
A.52B.51C.50D.49

查看答案和解析>>

同步練習(xí)冊(cè)答案