【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn且 (λ為常數(shù)).令cn=b2n(n∈N*)求數(shù)列{cn}的前n項(xiàng)和Rn .
【答案】
(1)解:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,由a2n=2an+1,取n=1,得a2=2a1+1,即a1﹣d+1=0①
再由S4=4S2,得 ,即d=2a1②
聯(lián)立①、②得a1=1,d=2.
所以an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1
(2)解:把a(bǔ)n=2n﹣1代入 ,得 ,則 .
所以b1=T1=λ﹣1,
當(dāng)n≥2時(shí), = .
所以 , .
Rn=c1+c2+…+cn= ③
④
③﹣④得: =
所以 ;
所以數(shù)列{cn}的前n項(xiàng)和
【解析】(1)設(shè)出等差數(shù)列的首項(xiàng)和公差,由已知條件列關(guān)于首項(xiàng)和公差的方程組,解出首項(xiàng)和公差后可得數(shù)列{an}的通項(xiàng)公式;(2)把{an}的通項(xiàng)公式代入 ,求出當(dāng)n≥2時(shí)的通項(xiàng)公式,然后由cn=b2n得數(shù)列{cn}的通項(xiàng)公式,最后利用錯(cuò)位相減法求其前n項(xiàng)和.
【考點(diǎn)精析】本題主要考查了等差數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:或;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex , x∈R.
(1)若直線y=kx+1與f (x)的反函數(shù)g(x)=lnx的圖象相切,求實(shí)數(shù)k的值;
(2)設(shè)x>0,討論曲線y=f (x) 與曲線y=mx2(m>0)公共點(diǎn)的個(gè)數(shù).
(3)設(shè)a<b,比較 與 的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計(jì)”課程是否與性別有關(guān),隨機(jī)抽取了選修課程的60名學(xué)生,得到數(shù)據(jù)如下表:
喜歡統(tǒng)計(jì)課程 | 不喜歡統(tǒng)計(jì)課程 | 合計(jì) | |
男生 | 20 | 10 | 30 |
女生 | 10 | 20 | 30 |
合計(jì) | 30 | 30 | 60 |
(1)判斷是否有99.5%的把握認(rèn)為喜歡“應(yīng)用統(tǒng)計(jì)”課程與性別有關(guān)?
(2)用分層抽樣的方法從喜歡統(tǒng)計(jì)課程的學(xué)生中抽取6名學(xué)生作進(jìn)一步調(diào)查,將這6名學(xué)生作為一個(gè)樣本,從中任選3人,求恰有2個(gè)男生和1個(gè)女生的概率.
下面的臨界值表供參考:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知曲線和曲線交于,兩點(diǎn)(在、之間),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過第四象限,求的取值范圍;
(2)若直線交軸負(fù)半軸于點(diǎn),交軸正半軸于點(diǎn),為坐標(biāo)原點(diǎn),設(shè)的面積為,求的最小值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于公差d>0的等差數(shù)列{an}的四個(gè)命題:
p1:數(shù)列{an}是遞增數(shù)列;
p2:數(shù)列{nan}是遞增數(shù)列;
p3:數(shù)列 是遞增數(shù)列;
p4:數(shù)列{an+3nd}是遞增數(shù)列;
其中真命題是( )
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左焦點(diǎn)為F,C與過原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF、BF,若|AB|=10,|AF|=6,cos∠ABF= ,則C的離心率e= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月14日.第一屆“一帶一路國(guó)際高峰論壇在北京舉行,為了解不同年齡的人對(duì)“一帶一路”關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)“青少年”與“中老年” 的人數(shù)之比為9:11
(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有99%的把握認(rèn)為關(guān)注“一帶一路”是和年齡段有關(guān)?
(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進(jìn)行問卷調(diào)查,在這9人中再取3人進(jìn)打面對(duì)面詢問,記選取的3人中“一帶一路”的人數(shù)為X,求x的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com