【題目】已知函數(shù)f(x)=ex , x∈R.
(1)若直線y=kx+1與f (x)的反函數(shù)g(x)=lnx的圖象相切,求實數(shù)k的值;
(2)設x>0,討論曲線y=f (x) 與曲線y=mx2(m>0)公共點的個數(shù).
(3)設a<b,比較 與
的大小,并說明理由.
【答案】
(1)解:函數(shù)f(x)=ex的反函數(shù)為g(x)=lnx,∴ .
設直線y=kx+1與g(x)的圖象相切于點P(x0,y0),則 ,解得
,k=e﹣2,
∴k=e﹣2.
(2)解:當x>0,m>0時,令f(x)=mx2,化為m= ,
令h(x)= ,則
,
則x∈(0,2)時,h′(x)<0,h(x)單調遞減;x∈(2,+∞)時,h′(x)>0,h(x)單調遞增.
∴當x=2時,h(x)取得極小值即最小值, .
∴當 時,曲線y=f (x) 與曲線y=mx2(m>0)公共點的個數(shù)為0;
當 時,曲線y=f (x) 與曲線y=mx2(m>0)公共點的個數(shù)為1;
當 時,曲線y=f (x) 與曲線y=mx2(m>0)公共點個數(shù)為2.
(3)解: =
=
= ,
令g(x)=x+2+(x﹣2)ex(x>0),則g′(x)=1+(x﹣1)ex.
g′′(x)=xex>0,∴g′(x)在(0,+∞)上單調遞增,且g′(0)=0,
∴g′(x)>0,∴g(x)在(0,+∞)上單調遞增,
而g(0)=0,∴在(0,+∞)上,有g(x)>g(0)=0.
∵當x>0時,g(x)=x+2+(x﹣2)ex>0,且a<b,
∴ ,
即當a<b時, .
【解析】(1)先求出其反函數(shù),利用導數(shù)得出切線的斜率即可;(2)由f(x)=mx2 , 令h(x)= ,利用導數(shù)研究函數(shù)h(x)的單調性即可得出;(3)利用作差法得
=
=
=
,令g(x)=x+2+(x﹣2)ex(x>0),利用導數(shù)研究其單調性即可證明.
科目:高中數(shù)學 來源: 題型:
【題目】“圓材埋壁”是《九章算術》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,學會一寸,鋸道長一尺,問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知道大小,用鋸取鋸它,鋸口深一寸,鋸道長一尺,問這塊圓柱形木材的直徑是多少?現(xiàn)有圓柱形木材一部分埋在墻壁中,截面如圖所示,已知弦尺,弓形高
寸,則陰影部分面積約為(注:
,
,1尺=10寸)( )
A. 6.33平方寸B. 6.35平方寸
C. 6.37平方寸D. 6.39平方寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某校有一塊形如直角三角形ABC的空地,其中∠B為直角,AB長40米,BC長50米,現(xiàn)欲在此空地上建造一間健身房,其占地形狀為矩形,且B為矩形的一個頂點,求該健身房的最大占地面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中錯誤的是( )
A. 若兩個平面平行,則分別位于這兩個平面的直線也互相平行
B. 平行于同一個平面的兩個平面平行;
C. 平面內(nèi)一個三角形各邊所在的直線都與另一個平面平行,則這兩個平面平行
D. 若兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設{an}是公比為q的等比數(shù)列.
(1)試推導{an}的前n項和公式;
(2)設q≠1,證明數(shù)列{an+1}不是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的前n項和為Sn , 且S4=4S2 , a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}的前n項和為Tn且 (λ為常數(shù)).令cn=b2n(n∈N*)求數(shù)列{cn}的前n項和Rn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com