已知α,β為銳角,且,那么sinαsinβ的取值范圍是   
【答案】分析:先通過積化和差公式和,,求得sinαsinβ=-[cos(2β)-]再根據(jù)β的范圍求出cos(2β)的范圍,進而求出sinαsinβ的取值范圍.
解答:解:∵
∴sinαsinβ=-[cos(α+β)-cos(α-β)]=-[cos(α+β)-]=-[cos(2β)-]
∵β為銳角,即
<2β,
∴-≤cos(2β)<
∴0<-[cos(2β)-]≤
故答案為:
點評:本題主要考查三角函數(shù)中的積化和差公式的應(yīng)用,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知sinβ=
3
5
,β為銳角,且sin(α+β)=cosα,則tan(α+β)
=( 。
A、1
B、
8
25
C、-2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α,β,γ均為銳角,且tanα=
1
2
,tanβ=
1
5
tanγ=
1
8
,則α,β,γ的和為(  )
A、
π
6
B、
π
4
C、
π
3
D、
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y為銳角,且滿足cos x=
4
5
,cos(x+y)=
3
5
,則sin y的值是(  )
A、
17
25
B、
3
5
C、
7
25
D、
1
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

學生李明解以下問題已知α,β,?均為銳角,且sinα+sin?=sinβ,cosβ+cos?=cosα求α-β的值
其解法如下:由已知sinα-sinβ=-sin?,cosα-cosβ=cos?,兩式平方相加得2-2cos(α-β)=1
cos(α-β)=
1
2
又α,β均銳角
-
π
2
<α-β<
π
2

α-β=±
π
3

請判斷上述解答是否正確?若不正確請予以指正.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y為銳角,且滿足cosx=
4
5
,cos(x+y)=
3
5
,則siny的值是
 

查看答案和解析>>

同步練習冊答案