20.雙曲線x2-y2=2的實(shí)軸長(zhǎng)為2$\sqrt{2}$,離心率為$\sqrt{2}$,漸近線方程為y=±x.

分析 求出雙曲線中的幾何量,即可求出實(shí)軸長(zhǎng)、離心率、漸近線方程.

解答 解:雙曲線x2-y2=2中a=b=$\sqrt{2}$,c=2,
∴實(shí)軸長(zhǎng)為2a=2$\sqrt{2}$;離心率為$\frac{c}{a}$=$\sqrt{2}$,漸近線方程為y=±x.
故答案為:2$\sqrt{2}$;$\sqrt{2}$;y=±x.

點(diǎn)評(píng) 本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.“條件甲:$\frac{1}{4}≤{2^a}≤\frac{1}{2}$”是“條件乙:(a+1)(a+2)≤1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.給出以下命題:
①存在兩個(gè)不等實(shí)數(shù)α,β,使得等式sin(α+β)=sinα+sinβ成立;
②若數(shù)列{an}是等差數(shù)列,且am+an=as+at(m、n、s、t∈N*),則m+n=s+t;
③若Sn是等比數(shù)列{an}的前n項(xiàng)和,則S6,S12-S6,S18-S12成等比數(shù)列;
④若Sn是等比數(shù)列{an}的前n項(xiàng)和,且Sn=Aqn+B;(其中A、B是非零常數(shù),n∈N*),則A+B為零;
⑤已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若a2+b2>c2,則△ABC一定是銳角三角形.
其中正確的命題的個(gè)數(shù)是(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知中心在原點(diǎn)的橢圓與雙曲線的公共焦點(diǎn)F1、F2都在x軸上,記橢圓與雙曲線在第一象限的交點(diǎn)為P,若△PF1F2是以PF1(F1為左焦點(diǎn))為底邊的等腰三角形,雙曲線的離心率為2,則橢圓的離心率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.給出下列命題:
①函數(shù)f(x)=sinx,g(x)=sin|x|都是周期函數(shù);
②把函數(shù)f(x)=2sin2x圖象上每個(gè)點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,然后再向右平移$\frac{π}{6}$個(gè)單位得到的函數(shù)解析式可以表示為g(x)=2sin($\frac{1}{2}$x-$\frac{π}{6}$);
③方程sinx=tanx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$)的實(shí)數(shù)解有3個(gè);
④函數(shù)y=cosx,x∈[0,2π]的圖象與直線y=1圍成的圖形面積等于2π;
⑤函數(shù)f(x)是偶函數(shù),且圖象關(guān)于直線x=1對(duì)稱,則2為f(x)的一個(gè)周期.
其中正確的命題是④⑤.(把正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列命題中,假命題為( 。
A.存在四邊相等的四邊形不是正方形
B.設(shè)x,y∈R,則“(x-y)•x2<0”是“x<y”的必要而不充分條件
C.若x,y∈R,且x+y>2,則x,y至少有一個(gè)大于1
D.命題:?n∈N,2n>1000的否定是:?n∈N,2n≤1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)i是虛數(shù)單位,復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于實(shí)軸對(duì)稱,z1=1-i,則$\frac{{z}_{1}}{{z}_{2}}$=( 。
A.2B.1+iC.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.某地區(qū)氣象臺(tái)統(tǒng)計(jì),該地區(qū)下雨的概率是$\frac{4}{15}$,刮四級(jí)以上風(fēng)的概率為$\frac{2}{15}$,既刮四級(jí)以上風(fēng)又下雨的概率為$\frac{1}{10}$,設(shè)事件A為下雨,事件B為刮四級(jí)以上的風(fēng),那么P(B|A)=$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(3,1)$,則$\overrightarrow b-\overrightarrow a$=(  )
A.(2,-1)B.(-2,1)C.(2,0)D.(4,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案