【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某市場研究人員為了了解共享單車運(yùn)營公司M的經(jīng)營狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場占有率y與月份代碼x之間的關(guān)系.求y關(guān)于x的線性回歸方程,并預(yù)測M公司2017年4月份的市場占有率;
(Ⅱ)為進(jìn)一步擴(kuò)大市場,公司擬再采購一批單車.現(xiàn)有采購成本分別為1000元/輛和1200元/輛的A、B兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車輛報(bào)廢年限各不相同.考慮到公司運(yùn)營的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車型的單車各100輛進(jìn)行科學(xué)模擬測試,得到兩款單車使用壽命頻數(shù)表如下:
車型 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
A | 20 | 35 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
經(jīng)測算,平均每輛單車每年可以帶來收入500元.不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率.如果你是M公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),你會(huì)選擇采購哪款車型?
參考數(shù)據(jù): , .
參考公式:
回歸直線方程為其中
【答案】(Ⅰ),;(Ⅱ) .
【解析】試題分析:
(Ⅰ)由回歸方程的公式可得,據(jù)此預(yù)測可得M公司2017年4月份的市場占有率為;
(Ⅱ)結(jié)合題意,以利潤的期望值為決策依據(jù),得到每輛款車的利潤數(shù)學(xué)期望為元;每輛B款車的利潤數(shù)學(xué)期望為元;∵,∴應(yīng)該采購款車.
試題解析:
(Ⅰ)由題意, , , ,∴
, 時(shí), ,即預(yù)測公司2017年4月份(即時(shí))的市場占有率為;
(Ⅱ)由頻率估計(jì)概率,每輛款車可使用1年,2年,3年、4年的概率分別為,
∴每輛款車的利潤數(shù)學(xué)期望為元;每輛款車可使用1年,2年,3年、4年的概率分別為,∴每輛B款車的利潤數(shù)學(xué)期望為元;∵,∴應(yīng)該采購款車.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)滿足f(x+1)﹣f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,1]上不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解高二年級(jí)學(xué)生對(duì)教師教學(xué)的意見,打算從高二年級(jí)883名學(xué)生中抽取80名進(jìn)行座談,若采用下面的方法選。合扔煤唵坞S機(jī)抽樣從883人中剔除3人,剩下880人再按系統(tǒng)抽樣的方法進(jìn)行,則每人入選的概率是( )
A.
B.
C.
D.無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣ .
(1)判斷f(x)的奇偶性;
(2)判斷f(x)的單調(diào)性,并用定義證明;
(3)解不等式f(f(x))+f( )<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知焦點(diǎn)在x軸上的橢圓 =1(b>0)有一個(gè)內(nèi)含圓x2+y2= ,該圓的垂直于x軸的切線交橢圓于點(diǎn)M,N,且 ⊥ (O為原點(diǎn)).
(1)求b的值;
(2)設(shè)內(nèi)含圓的任意切線l交橢圓于點(diǎn)A、B.求證: ,并求| |的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+4x+a,x∈[0,1],若f(x)有最小值﹣2,則f(x)的最大值為( )
A.1
B.0
C.﹣1
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,x∈[2,5].
(1)判斷函數(shù)f(x)的單調(diào)性,并用定義證明你的結(jié)論;
(2)求不等式f(m+1)<f(2m﹣1)的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣mx+m2﹣19=0},B={x|x2﹣5x+6=0},C={2,﹣4},若A∩B≠,A∩C=,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x的方程x2+px﹣12=0和x2+qx+r=0的解集分別是A,B,且A≠B.A∪B={﹣3,2,4},A∩B={﹣3}.求p,q,r的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com