△ABC內(nèi)接于以O(shè)為圓心半徑為1的圓,且3
OA
+4
OB
+5
OC
=
0
,則S△AOB=
 
考點(diǎn):向量在幾何中的應(yīng)用
專題:計(jì)算題,平面向量及應(yīng)用
分析:3
OA
+4
OB
+5
OC
=
0
可推出
OA
OB
=0,從而可得△OAB為直角三角形,從而求面積.
解答: 解:∵3
OA
+4
OB
+5
OC
=
0
,
∴3
OA
+4
OB
=-5
OC
;
故(3
OA
+4
OB
2=(-5
OC
2
即9+16+24
OA
OB
=25;
OA
OB
=0;
OA
OB
;
則S△AOB=
1
2
×1×1=
1
2
;
故答案為:
1
2
點(diǎn)評(píng):本題考查了向量在平面幾何中的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x(
1
2x-1
+k).
(1)當(dāng)k=
1
2
時(shí),判斷函數(shù)f(x)的奇偶性;
(2)在(1)的條件下,證明f(x)>0;
(3)若對(duì)任意x∈[1,2]時(shí),不等式f(x)>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xex+x2+ax+b,在點(diǎn)(0,f(0))處的切線方程是x+y-1=0,其中e為自然對(duì)數(shù)的底數(shù),函數(shù)g(x)=lnx-cx+1+c(c>0),對(duì)一切x∈(0,+∞),均有g(shù)(x)≤1恒成立.
(1)求a,b,c的值;
(2)求證:f(x)+xg(x)>4
x
-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是雙曲線C:
x2
4
-
y2
12
=1的兩個(gè)焦點(diǎn),點(diǎn)P是雙曲線C上一點(diǎn),若|PF1|=5,則|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若sinA+cosA=
2
3
,試根據(jù)比較三角函數(shù)線,探究這個(gè)三角形是什么三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2014年春節(jié)聯(lián)歡晚會(huì)要從五人中選派四人分別從事拍照、錄像、照明、后勤四項(xiàng)不同工作,若其中小張和小王只能從事前兩項(xiàng)工作,其余三人均能從事這四項(xiàng)不同工作,則不同的選派方案共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線mx+
3
ay-m=0(m≠0)過(guò)點(diǎn)(0,1),則它的傾斜角為(  )
A、30°B、45°
C、120°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次方程f(x)=ax2-4bx+1
(1)設(shè)集合P={1,2,3},Q={-1,1,2,3,4},分別從集合P,Q中隨機(jī)取一個(gè)數(shù)為a和b,求函數(shù)y=f(x)在[1,+∞)上是增函數(shù)的概率
(2)設(shè)點(diǎn)(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),設(shè)A={f(1)<0},求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn=
3
2
(an-1),其中{an}均有前n項(xiàng)和Sn,{bn}滿足bn=
1
4
bn-1-
3
4
(n≥2),b1=3.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn=anlog2(bn+1)求{cn}前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案