A. | 30° | B. | 45° | C. | 60° | D. | 120° |
分析 根據(jù)向量$\overrightarrow{BA},\overrightarrow{BC}$的坐標(biāo)便可求出$\overrightarrow{BA}•\overrightarrow{BC}$,及$|\overrightarrow{BA}|,|\overrightarrow{BC}|$的值,從而根據(jù)向量夾角余弦公式即可求出cos∠ABC的值,根據(jù)∠ABC的范圍便可得出∠ABC的值.
解答 解:$\overrightarrow{BA}•\overrightarrow{BC}=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{2}$,$|\overrightarrow{BA}|=|\overrightarrow{BC}|=1$;
∴$cos∠ABC=\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}=\frac{\sqrt{3}}{2}$;
又0°≤∠ABC≤180°;
∴∠ABC=30°.
故選A.
點(diǎn)評(píng) 考查向量數(shù)量積的坐標(biāo)運(yùn)算,根據(jù)向量坐標(biāo)求向量長(zhǎng)度的方法,以及向量夾角的余弦公式,向量夾角的范圍,已知三角函數(shù)值求角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,2) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A、B、C三點(diǎn)共線 | B. | A、B、D三點(diǎn)共線 | C. | A、C、D三點(diǎn)共線 | D. | B、C、D三點(diǎn)共線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | $\frac{9π}{2}$ | C. | 6π | D. | $\frac{32π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com