15.設直線l1,l2分別是函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,0<x<1}\\{lnx,x>1}\end{array}\right.$圖象上點P1,P2處的切線,l1與l2垂直相交于點P,且l1,l2分別與y軸相交于點A,B,則△PAB的面積的取值范圍是( 。
A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)

分析 設出點P1,P2的坐標,求出原分段函數(shù)的導函數(shù),得到直線l1與l2的斜率,由兩直線垂直求得P1,P2的橫坐標的乘積為1,再分別寫出兩直線的點斜式方程,求得A,B兩點的縱坐標,得到|AB|,聯(lián)立兩直線方程求得P的橫坐標,然后代入三角形面積公式,利用基本不等式求得△PAB的面積的取值范圍.

解答 解:設P1(x1,y1),P2(x2,y2)(0<x1<1<x2),
當0<x<1時,f′(x)=$-\frac{1}{x}$,當x>1時,f′(x)=$\frac{1}{x}$,
∴l(xiāng)1的斜率${k}_{1}=-\frac{1}{{x}_{1}}$,l2的斜率${k}_{2}=\frac{1}{{x}_{2}}$,
∵l1與l2垂直,且x2>x1>0,
∴${k}_{1}•{k}_{2}=-\frac{1}{{x}_{1}}•\frac{1}{{x}_{2}}=-1$,即x1x2=1.
直線l1:$y=-\frac{1}{{x}_{1}}(x-{x}_{1})-ln{x}_{1}$,l2:$y=\frac{1}{{x}_{2}}(x-{x}_{2})+ln{x}_{2}$.
取x=0分別得到A(0,1-lnx1),B(0,-1+lnx2),
|AB|=|1-lnx1-(-1+lnx2)|=|2-(lnx1+lnx2)|=|2-lnx1x2|=2.
聯(lián)立兩直線方程可得交點P的橫坐標為x=$\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$,
∴${S}_{△PAB}=\frac{1}{2}$|AB|•|xP|=$\frac{1}{2}×2×\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$=$\frac{2}{{x}_{1}+{x}_{2}}=\frac{2}{{x}_{1}+\frac{1}{{x}_{1}}}$.
∵函數(shù)y=x+$\frac{1}{x}$在(0,1)上為減函數(shù),且0<x1<1,
∴${x}_{1}+\frac{1}{{x}_{1}}>1+1=2$,則$0<\frac{1}{{x}_{1}+\frac{1}{{x}_{1}}}<\frac{1}{2}$,
∴$0<\frac{2}{{x}_{1}+\frac{1}{{x}_{1}}}<1$.
∴△PAB的面積的取值范圍是(0,1).
故選:A.

點評 本題考查利用導數(shù)研究過曲線上某點處的切線方程,訓練了利用基本不等式求函數(shù)的最值,考查了數(shù)學轉化思想方法,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.在△ABC中,a2+c2=b2+$\sqrt{2}$ac.
(Ⅰ)求∠B的大小;
(Ⅱ)求$\sqrt{2}$cosA+cosC的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.一個由半球和四棱錐組成的幾何體,其三視圖如圖所示.則該幾何體的體積為( 。
A.$\frac{1}{3}$+$\frac{2}{3}$πB.$\frac{1}{3}$+$\frac{\sqrt{2}}{3}$πC.$\frac{1}{3}$+$\frac{\sqrt{2}}{6}$πD.1+$\frac{\sqrt{2}}{6}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知矩陣A=$[\begin{array}{l}{1}&{2}\\{0}&{-2}\end{array}]$,矩陣B的逆矩陣B-1=$[\begin{array}{l}{1}&{-\frac{1}{2}}\\{0}&{2}\end{array}]$,求矩陣AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設p:實數(shù)x,y滿足x>1且y>1,q:實數(shù)x,y滿足x+y>2,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD.

(I)在平面PAD內找一點M,使得直線CM∥平面PAB,并說明理由;
(II)證明:平面PAB⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設p:實數(shù)x,y滿足(x-1)2+(y-1)2≤2,q:實數(shù)x,y滿足$\left\{\begin{array}{l}{y≥x-1}\\{y≥1-x}\\{y≤1}\end{array}\right.$,則p是q的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如圖,AB是圓的直徑,弦CD與AB相交于點E,BE=2AE=2,BD=ED,則線段CE的長為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),則∠ABC=( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

同步練習冊答案