【題目】已知橢圓: 經(jīng)過點,且離心率為.
(I)求橢圓的方程;
(II)若一組斜率為的平行線,當(dāng)它們與橢圓相交時,證明:這組平行線被橢圓截得的線段的中點在同一條直線上.
【答案】(Ⅰ) (Ⅱ)見解析
【解析】試題分析:(Ⅰ)由經(jīng)過點,可得,根據(jù)離心率為,結(jié)合可得,從而可得橢圓的方程;(Ⅱ) 設(shè)直線與橢圓的兩個交點坐標(biāo)分別為 , ,它們的中點坐標(biāo)為.由,兩式相減,結(jié)合, , ,化簡可得,所以這組平行線被橢圓截得的線段的中點在同一條直線上.
試題解析:(Ⅰ)由已知可得, , 又,可得, , 所以橢圓的方程為.
(Ⅱ) 證明:設(shè)直線與橢圓的兩個交點坐標(biāo)分別為 , ,它們的中點坐標(biāo)為.由兩式相減可得, ,由已知,所以,故直線被橢圓截得的線段的中點都在直線上.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù) 的圖象向左平移 個單位,再向下平移4個單位,得到函數(shù)g(x)的圖象,則函數(shù)f(x)的圖象與函數(shù)g(x)的圖象( )
A.關(guān)于點(﹣2,0)對稱
B.關(guān)于點(0,﹣2)對稱
C.關(guān)于直線x=﹣2對稱
D.關(guān)于直線x=0對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: (其中為圓心)上的每一點橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼囊话,得到曲線.
(1)求曲線的方程;
(2)若點為曲線上一點,過點作曲線的切線交圓于不同的兩點(其中在的右側(cè)),已知點.求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為2,有一個銳角為60°的菱形ABCD,沿著較短的對角線BD對折,使得,O為BD的中點.
(Ⅰ)求證:
(Ⅱ)求三棱錐的體積;
(Ⅲ)求二面角A-BC-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為正實數(shù).
(1)若函數(shù)在處的切線斜率為2,求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)有兩個極值點,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|﹣|x+3|,a∈R.
(1)當(dāng)a=﹣1時,解不等式f(x)≤1;
(2)若當(dāng)x∈[0,3]時,f(x)≤4,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為, 為的中點, 為線段上的動點,過點, , 的平面截該正方體所得的截面為,則下列命題正確的是__________(寫出所有正確命題的編號).
①當(dāng)時, 為四邊形;②當(dāng)時, 為等腰梯形;
③當(dāng)時, 與的交點滿足;
④當(dāng)時, 為五邊形;
⑤當(dāng)時, 的面積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)平面內(nèi)到點和直線的距離相等的點的軌跡為曲線,則曲線的方程為_______;若直線與曲線相交于不同兩點, ,與圓相切于點,且為線段的中點.在的變化過程中,滿足條件的直線有條,則的所有可能值為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆江西省南昌市高三第一輪】已知分別為三個內(nèi)角的對邊,且.
(Ⅰ)求;
(Ⅱ)若為邊上的中線, , ,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com