若復(fù)數(shù)z=
1+2i
1+i
,則z在復(fù)平面上對應(yīng)的點在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求出復(fù)數(shù)對應(yīng)點的坐標(biāo),則答案可求.
解答: 解:∵z=
1+2i
1+i
=
(1+2i)(1-i)
(1+i)(1-i)
=
3+i
2
=
3
2
+
i
2
,
∴z在復(fù)平面上對應(yīng)的點的坐標(biāo)為(
3
2
,
1
2
),位于第一象限.
故選:A.
點評:本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為[0,1]的函數(shù)f(x),如果同時滿足以下三個條件:
①對任意的x∈[0,1],總有f(x)≥0
②f(1)=1
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2) 成立;則稱函數(shù)f(x)為理想函數(shù).試證明下列三個命題:
(1)若函數(shù)f(x)為理想函數(shù),則f(0)=0;
(2)函數(shù)f(x)=2x-1(x∈[0,1])是理想函數(shù);
(3)若函數(shù)f(x)是理想函數(shù),假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,則f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+ϕ),(A>0,ω>0,0≤ϕ≤π)的部分圖象如圖所示,則y=f(x)的解析式是f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}共有20項,其中前四項的積是
1
128
,末四項的積是512,則這個等比數(shù)列的各項乘積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3tanx的周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-k)x+
m
x
+2,其中k,m∈R,且m≠0.
(1)求函數(shù)f(x)的定義域;
(2)k如何取值時,函數(shù)f(x)存在零點,并求出零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角θ的終邊過點P(-4t,3t)(t≠0),則2sinθ+cosθ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三次函數(shù)f(x)=ax3+x在x∈(-∞,+∞)內(nèi)是增函數(shù),則( 。
A、a>0
B、a<0
C、a=1
D、a=
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)m=
2
3
是直線l1:x+2y-4=0與l2:mx+(2-m)y-1=0平行的
 
條件.(充要條件或充分不必要條件或必要不充分條件或既不充分又不必要條件).

查看答案和解析>>

同步練習(xí)冊答案