11.設Y是由6的全體正約數(shù)組成的集合,寫出Y的所有子集和真子集.

分析 求出集合Y,從而求出Y的子集和真子集即可.

解答 解:6的全體正約數(shù)是1,2,3,6,
故Y={1,2,3,6},
故Y的子集是∅,{1},{2},{3},{6},
{1,2},{1,3},{1,6},
{2,3},{2,6},{3,6},
{1,2,3},{1,2,6},{1,3,6},
{2,3,6},{1,2,3,6},
故Y的真子集是∅,{1},{2},{3},{6},
{1,2},{1,3},{1,6},
{2,3},{2,6},{3,6},
{1,2,3},{1,2,6},{1,3,6},
{2,3,6}.

點評 本題考查了集合的子集和真子集的定義,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.若行列式$|\begin{array}{l}{-1}&{5}&{x}\\{1}&{x}&{3}\\{7}&{8}&{9}\end{array}|$中,元素-1的代數(shù)余子式大于0,則x滿足的條件是x>$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設集合M={x|-1<x<3},N={y|y=2x+a,x∈M},M∪N=N,則實數(shù)a的取值范圍是(  )
A.{a|-3<a<1}B.{a|-3≤a≤1}C.{a|-2<a<2}D.{a|-2≤a≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求函數(shù)f(θ)=$\frac{1}{si{n}^{2}θ}$+$\frac{9}{co{s}^{2}θ}$,θ∈(0,$\frac{π}{2}$)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知集合A={1,9,x},集合B={1,x2},若A∩B=B,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=$\sqrt{\frac{1}{1-|x|}}$的定義域是( 。
A.{x|x>0}B.{x|x>0或x≤-1}C.{x|-1<x<1}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設直線l:x-2y-m=0與橢圓C:$\frac{{x}^{2}}{4}$+y2=1相交于A,B兩點,M為橢圓C的左頂點,若△ABM的重心在y軸右側,則m的取值范圍是(2,2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|.
(1)求證:f(-x)=f(x);
(2)畫出y=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=1,則$\overrightarrow{a}$•$\overrightarrow$的最大值為$\frac{1}{4}$.

查看答案和解析>>

同步練習冊答案