分析 (Ⅰ)運用余弦定理化簡整理,再由特殊角的三角函數(shù)值,即可得到所求角B;
(Ⅱ)運用余弦定理:b2=a2+c2-2accosB,結(jié)合基本不等式即可得到a+c的最大值.
解答 解:(Ⅰ)∵$bcosC=a-\frac{1}{2}c∴b\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=a-\frac{1}{2}c$,
∴b2-c2=a2-ac
∴b2=a2+c2-ac,
∴$cosB=\frac{1}{2}$,
又∵$B∈(0,π)∴B=\frac{π}{3}$;
(Ⅱ)∵b2=a2+c2-2accosB,
∴1=a2+c2-ac=(a+c)2-3ac,
∵$ac≤\frac{{{{(a+c)}^2}}}{4}$當且僅當a=c時等號成立,
∴$\frac{1}{4}{(a+c)^2}≤1$,即a+c≤2.
即有a+c的最大值為2.
點評 本題考查余弦定理的運用,考查運用基本不等式求最值的方法,以及運算化簡能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 0或1 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}+1$ | B. | $\sqrt{3}-1$ | C. | -$\sqrt{3}-1$ | D. | -$\sqrt{3}+$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-2)∪(0,2) | B. | (-3,-1)∪(1,3) | C. | (-2,2) | D. | (-∞,-1)∪(3,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com