已知集合A={x2-5x-14≤0},B={x|m+1<x<2m-1},若A∪B=A,求實(shí)數(shù)m的取值范圍.
考點(diǎn):并集及其運(yùn)算
專題:集合
分析:求出A中不等式的解集確定出A,根據(jù)A與B的并集為A,分B為空集及不為空集兩種情況,分別列出關(guān)于m的不等式,求出不等式的解集即可確定出m的范圍.
解答: 解:由A中的不等式變形得:(x+2)(x-7)≤0,
解得:-2≤x≤7,即A=[-2,7];
∵B=(m+1,2m-1),且A∪B=A,
∴當(dāng)B=∅時(shí),m+1≥2m-1,解得:m≤2,
當(dāng)B≠∅時(shí),
m+1≥-2
2m-1≤7
,
解得:-3≤m≤4;
則實(shí)數(shù)m的取值范圍為(-∞,4].
點(diǎn)評(píng):此題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

小明家訂了一份報(bào)紙,寒假期間他收集了每天報(bào)紙送達(dá)時(shí)間的數(shù)據(jù),并繪制成頻率分布直方圖,如圖所示.
(Ⅰ)根據(jù)圖中的數(shù)據(jù)信息,求出眾數(shù)x1和中位數(shù)x2(精確到整數(shù)分鐘);
(Ⅱ)小明的父親上班離家的時(shí)間y在上午7:00至7:30之間,而送報(bào)人每天在x1時(shí)刻前后半小時(shí)內(nèi)把報(bào)紙送達(dá)(每個(gè)時(shí)間點(diǎn)送達(dá)的可能性相等),求小明的父親在上班離家前能收到報(bào)紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明f(x)=-x2在(-∞,0)上是增函數(shù),在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,且∠ACB=90°,∠BAC=30°,BC=1,AA1=
6
,點(diǎn)P、M、N分別為BC1、CC1、AB1的中點(diǎn).
(1)求證:PN∥平面ABC;
(2)求證:A1M⊥AB1C1;
(3)求點(diǎn)M到平面AA1B1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD中,AB=2,AD=5,E,F(xiàn)分別在AD,BC上且AE=1,BF=3,將四邊形AEFB沿EF折起,使點(diǎn)B在平面CDEF上的射影H在直線DE上.

(1)求證:AD∥平面BFC;
(2)求二面角A-DE-F的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,PA⊥平面ABCD,△ABC為等邊三角形,AP=AB,AC⊥CD,M為AC的中點(diǎn).
(Ⅰ)求證:BM∥平面PCD;
(Ⅱ)若直線PD與平面PAC所成角的正切值為
6
2
,求二面角A-PD-M的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7個(gè)排成一排,在下列情況下,各有多少種不同排法?
(1)甲排頭;                     
(2)甲、乙、丙三人必須在一起;
(3)甲、乙、丙三人兩兩不相鄰;    
(4)甲不排頭,乙不排當(dāng)中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-1的反函數(shù)為y=f-1(x),記g(x)=f-1(x-1)
(1)求函數(shù)y=2f-1(x)-g(x)的最小值;
(2)集合A={x|[1+f(x)]•|f(x)|≥2},對(duì)于任意的x∈A,不等式2f-1(x+m)-g(x)≥0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(lg3)2-lg9+1
•(lg
27
+lg8-lg
1000
)
lg0.3•lg1.2
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案