分析 在(3x-$\sqrt{7}$)4=a0+a1x+a2x2+a3x3+a4x4中利用賦值法,分別令x=1可求a0+a1+a2+a3+a4,令x=-1可求a0-a1+a2-a3+a4),而(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4),代入可求.
解答 解:在(3x-$\sqrt{7}$)4=a0+a1x+a2x2+a3x3+a4x4中
令x=1可得,a0+a1+a2+a3+a4=(3-$\sqrt{7}$)4,
令x=-1可得,a0-a1+a2-a3+a4=(-3-$\sqrt{7}$)4,
∴(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(3-$\sqrt{7}$)4(-3-$\sqrt{7}$)4=16,
故答案為:16.
點評 本題主要考查了二項展開式中利用賦值法求解二項展開式的各項系數(shù)之和(注意是各項系數(shù)之和,要區(qū)別于二項式系數(shù)之和),解答本題還要注意所求式子的特點:符合平方差公式.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{40}{3}$ | B. | $\frac{32}{3}$ | C. | $\frac{16}{3}$ | D. | $\frac{28}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com