【題目】已知圓,直線過定點(diǎn)

(1)若與圓相切,求直線的方程;

(2)若點(diǎn)為圓上一點(diǎn),求的最大值和最小值.

【答案】(1)直線方程為,;(2) .

【解析】試題分析:(1)根據(jù)直線和圓相切,即圓心到直線的距離等于半徑列式子求得k值;(2)將式子化簡(jiǎn)得到,轉(zhuǎn)化為點(diǎn)點(diǎn)距,進(jìn)而轉(zhuǎn)化為圓心到的距離,加減半徑,即求得最值。

解析:

(1)①若直線的斜率不存在,即直線是,符合題意;

②若直線的斜率存在,設(shè)直線,即

由題意知,圓心到已知直線的距離等于半徑2,即,解得

故所求直線方程為,

(2)可以看作圓上的點(diǎn)與點(diǎn)距離的平方.

把點(diǎn)代入圓的方程:,所以點(diǎn)在圓外.

所以圓上的點(diǎn)到的最大距離為,最小距離為(其中為圓心到的距離),

,故最大距離為,最小距離為

所以,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,其中 , ,存在 使得 成立,則實(shí)數(shù) 的值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了準(zhǔn)確地把握市場(chǎng),做好產(chǎn)品生產(chǎn)計(jì)劃,對(duì)過去四年的數(shù)據(jù)進(jìn)行整理得到了第年與年銷量(單位:萬件)之間的關(guān)系如下表:

(1)在圖中畫出表中數(shù)據(jù)的散點(diǎn)圖;

(2)根據(jù)散點(diǎn)圖選擇合適的回歸模型擬合的關(guān)系(不必說明理由);

(3)建立關(guān)于的回歸方程,預(yù)測(cè)第5年的銷售量.

附注:參考公式:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , 依次成公比為2的等比數(shù)列,且

B. , 依次成公比為2的等比數(shù)列,且

C. , , 依次成公比為的等比數(shù)列,且

D. , , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程分別是為參數(shù))和為參數(shù)),以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求圓的極坐標(biāo)方程;

(Ⅱ)射線 與圓交于點(diǎn)、,與圓交于點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)是原點(diǎn)O,以x軸為對(duì)稱軸,且經(jīng)過點(diǎn)P(1,2).

(1)求拋物線C的方程;

設(shè)點(diǎn)A,B在拋物線C上,直線PA,PB分別與y軸交于點(diǎn)MN,|PM|=|PN|.求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中=2.71828…為自然數(shù)的底數(shù).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),求證:對(duì)任意的, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【題目】【2018江西蓮塘一中、臨川二中高三上學(xué)期第一次聯(lián)考二次函數(shù)的圖象過原點(diǎn),對(duì),恒有成立,設(shè)數(shù)列滿足

(I)求證:對(duì),恒有成立;

(II)求函數(shù)的表達(dá)式;

(III)設(shè)數(shù)列項(xiàng)和為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體是由棱臺(tái) 和棱錐拼接而成的組合體,其底面四邊形是邊長(zhǎng)為 的菱形,且 平面 ,

1)求證:平面 平面 ;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案