【題目】在直角坐標(biāo)系中,圓和的參數(shù)方程分別是(為參數(shù))和(為參數(shù)),以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓和的極坐標(biāo)方程;
(Ⅱ)射線: 與圓交于點(diǎn)、,與圓交于點(diǎn)、,求的最大值.
【答案】(Ⅰ) , .(Ⅱ)4.
【解析】試題分析:(1)圓C1的參數(shù)方程分別是(φ為參數(shù)),利用平方關(guān)系可得普通方程,展開(kāi)利用互化公式可得極坐標(biāo)方程.圓C2的參數(shù)方程(β為參數(shù)),利用平方關(guān)系可得普通方程,展開(kāi)利用互化公式可得極坐標(biāo)方程.
(2)依題意得點(diǎn)、的極坐標(biāo)分別為, ,從而表示出,利用正弦函數(shù)的有界性問(wèn)題迎刃而解.
試題解析:
(Ⅰ)圓和的普通方程分別是和.
∴圓和的極坐標(biāo)方程分別為, .
(Ⅱ)依題意得點(diǎn)、的極坐標(biāo)分別為, 。
∴, ,從而,
當(dāng)且僅當(dāng),即時(shí),上式取“”, 取最大值4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(cosx)-x與函數(shù)g(x)=cos(sinx)-x在區(qū)間(0, )都為減函數(shù),設(shè)x1,x2,x3∈(0, ),且cosx1=x1 , sin(cosx2)=x2 , cos(sinx3)=x3 , 則x1,x2,x3的大小關(guān)系是( )
A.x1<x2<x3
B.x3<x1<x2
C.x2<x1<x3
D.x2<x3<x1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部是等腰梯形,其中為2米,梯形的高為1米, 為3米,上部是個(gè)半圓,固定點(diǎn)為的中點(diǎn). 是由電腦控制可以上下滑動(dòng)的伸縮橫桿(橫桿面積可忽略不計(jì)),且滑動(dòng)過(guò)程中始終保持和平行.當(dāng)位于下方和上方時(shí),通風(fēng)窗的形狀均為矩形(陰影部分均不通風(fēng)).
(1)設(shè)與之間的距離為(且)米,試將通風(fēng)窗的通風(fēng)面積(平方米)表示成關(guān)于的函數(shù);
(2)當(dāng)與之間的距離為多少米時(shí),通風(fēng)窗的通風(fēng)面積取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象與軸相切,且切點(diǎn)在軸的正半軸上.
(1)求曲線與軸,直線及軸圍成圖形的面積;
(2)若函數(shù)在上的極小值不大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,直線過(guò)定點(diǎn).
(1)若與圓相切,求直線的方程;
(2)若點(diǎn)為圓上一點(diǎn),求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(sinx+cosx)2-2cos2x,
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)當(dāng)x∈時(shí),求f(x)的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若在處取極值,求在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若有唯一的零點(diǎn),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn),曲線: (為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,有相同單位長(zhǎng)度的極坐標(biāo)系中,直線: .
(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)求與直線平行且與曲線相切的直線的直角坐標(biāo)方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com