已知命題p:“?x∈R,?m∈R,使4x+2x•m+1=0”.若命題p為真命題,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,-2]
B、[2,+∞)
C、(-∞,-2)
D、(2,+∞)
考點(diǎn):復(fù)合命題的真假,全稱命題
專題:簡易邏輯
分析:命題p:“?x∈R,?m∈R,使4x+2x•m+1=0”.則m=-
4x+1
2x
,再利用基本不等式即可得出.
解答: 解:命題p:“?x∈R,?m∈R,使4x+2x•m+1=0”.
則m=-
4x+1
2x
=-(2x+
1
2x
)
≤-2
2x
1
2x
=-2.
∵命題p為真命題,∴實(shí)數(shù)m的取值范圍是(-∞,-2].
故選:A.
點(diǎn)評(píng):本題考查了基本不等式的性質(zhì)、指數(shù)的運(yùn)算性質(zhì)、簡易邏輯的有關(guān)知識(shí),考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)(1,2)在圓
x=-1+8cosθ
y=8sinθ
的(  )
A、內(nèi)部B、外部
C、圓上D、與θ的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個(gè)質(zhì)點(diǎn)隨機(jī)投放在以A(1,1),B(5,1),C(1,4)為頂點(diǎn)的三角形內(nèi)(含邊界),若該質(zhì)點(diǎn)到此三角形的三個(gè)頂點(diǎn)的距離均不小于d的概率為1-
π
6
,則d=( 。
A、1
B、
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)上有一點(diǎn)M(4,y0),它到焦點(diǎn)F的距離為5,則△OFM的面積(O為原點(diǎn))為( 。
A、1
B、
2
C、2
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,假命題的是( 。
A、?x0∈R,sinx0+
3
cosx0=2
B、?x∈[0,+∞),ex-x>0
C、?x0∈(0,+∞),lgx0=-1
D、?x∈(-∞,0],2x2-3x-2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于兩個(gè)以上不相等的正整數(shù)組(a1,a2,…an),若i<j時(shí)有ai<aj,則稱(ai,aj)是該數(shù)組的一個(gè)“優(yōu)組”,一個(gè)數(shù)組中的“優(yōu)組”的個(gè)數(shù)稱為此數(shù)組的“優(yōu)組數(shù)”,例如,數(shù)組(1,9,6,8)中有優(yōu)組(1,9),(1,6),(1,8),(6,8),其優(yōu)組數(shù)等于4;若各數(shù)互不相等的正整數(shù)組(a1,a2…a10)的“優(yōu)組數(shù)”為30,則(a10,a9,a8…,a1)的“優(yōu)組數(shù)”為( 。
A、0B、15C、30D、45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b表示不同的直線,α,β表示不同的平面,則下列命題正確的是( 。
A、若a∥α,b∥β,α∥β,則a∥b
B、若a∥b,a?α,b?β,則α∥β
C、若a∥b,a?α,b?α,則a∥α
D、若α∩β=a,b∥β,則a∥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M、N分別是△ADB和△ADC的重心,點(diǎn)A不在平面α內(nèi),B、D、C均在平面α內(nèi),求證:MN∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)某地區(qū)O型血的人數(shù)占總?cè)丝跀?shù)的比為
1
2
,現(xiàn)從中隨機(jī)抽取3人.
(1)求3人中恰有2人為O型血的概率;
(2)記O型血的人數(shù)為ξ,求ξ的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案