某銀行柜臺(tái)有服務(wù)窗口①,假設(shè)顧客在此辦理業(yè)務(wù)所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,對(duì)以往顧客辦理業(yè)務(wù)所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:
辦理業(yè)務(wù)所需的時(shí)間/分 1 2 3 4 5
        頻率 0.1 0.4 a 0.1 0.1
從第一個(gè)顧客開始辦理業(yè)務(wù)時(shí)計(jì)時(shí),
(1)求a的值;
(2)估計(jì)第三個(gè)顧客恰好等待4分鐘開始辦理業(yè)務(wù)的概率.
考點(diǎn):等可能事件的概率,離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:(1)由頻率和為1,即可得到a的值;
(2)設(shè)Y表示顧客辦理業(yè)務(wù)所需的時(shí)間,用頻率估計(jì)概率,可得Y的分布列,A表示事件“第三個(gè)顧客恰好等待4分鐘開始辦理業(yè)務(wù)”,則時(shí)間A對(duì)應(yīng)三種情形:①第一個(gè)顧客辦理業(yè)務(wù)所需時(shí)間為1分鐘,且第二個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為3分鐘;②第一個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為3分鐘,且第二個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為1分鐘;③第一個(gè)和第二個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間均為2分鐘,由此可求概率.
解答: 解:(1)由頻率和為1,得到0.1+0.4+a+0.1+0.1=1,
∴a=0.3;
(2)設(shè)Y表示顧客辦理業(yè)務(wù)所需的時(shí)間,用頻率估計(jì)概率,得Y的分布如下:
Y 1 2 3 4 5
P 0.1 0.4 0.3 0.1 0.1
(1)A表示事件“第三個(gè)顧客恰好等待4分鐘開始辦理業(yè)務(wù)”,則時(shí)間A對(duì)應(yīng)三種情形:
①第一個(gè)顧客辦理業(yè)務(wù)所需時(shí)間為1分鐘,且第二個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為3分鐘;
②第一個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為3分鐘,且第二個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為1分鐘;
③第一個(gè)和第二個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間均為2分鐘.
所以 P(A)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.
點(diǎn)評(píng):本題考查概率的求解,解題的關(guān)鍵是明確變量的取值與含義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(3,2),
b
=(-2,3),則
a
b
的關(guān)系是(  )
A、
a
b
B、
a
b
C、
a
=
b
D、沒有關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
1
x
+(1-a)lnx.
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在x=1處的切線方程;
(Ⅱ)若a≤0,討論函數(shù)求f(x)的單調(diào)性;
(Ⅲ)若關(guān)于x的方程f(x)=ax在(0,1)上有兩個(gè)相異實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在一個(gè)周期內(nèi)的圖象如圖,
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某大風(fēng)車的半徑為2m,每12s逆時(shí)針旋轉(zhuǎn)一周,它的最低點(diǎn)O離地面0.5m.風(fēng)車圓周上一點(diǎn)A從最低點(diǎn)O開始,運(yùn)動(dòng)t(s)后與地面的距離為f(t).
(1)求函數(shù)f(t)的關(guān)系式;
(2)經(jīng)過多長(zhǎng)時(shí)間A點(diǎn)離地面的距離為1.5cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于0的等差數(shù)列{an},a2=4,且a2,a4-2,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}的通項(xiàng)公式是bn=2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(
x
2
-
2
x
6的二項(xiàng)展開式中,x2的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x2-
1
2x
9的展開式中x9的系數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=2-(x2-2x+2)i,x∈R,則復(fù)數(shù)z對(duì)應(yīng)點(diǎn)在第
 
象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案