A. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠±3) | B. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠±5) | ||
C. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1(x≠±3) | D. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1(x≠±5) |
分析 根據(jù)|AB|+|AC|=10>8=|BC|,可知點(diǎn)A的軌跡是以B,C為焦點(diǎn)的橢圓,從而可假設(shè)橢圓的標(biāo)準(zhǔn)方程,進(jìn)而可求橢圓的標(biāo)準(zhǔn)方程.
解答 解:∵△ABC中,B(-4,0),C(4,0),AB+AC=10,
∴|BC|=8
∵|AB|+|AC|=10>8=|BC|
∴點(diǎn)A的軌跡是以B,C為焦點(diǎn)的橢圓,a=5,c=4,則b=3,
所求橢圓方程為:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$,x≠±5.
故選:B.
點(diǎn)評(píng) 本題的考點(diǎn)是橢圓的定義,橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,曲線與方程的關(guān)系,解題的關(guān)鍵是確定點(diǎn)A的軌跡是以B,C為焦點(diǎn)的橢圓.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$ | B. | $\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$ | C. | $\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$ | D. | $\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (0,1] | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$$\overrightarrow{EF}$+$\frac{1}{2}$$\overrightarrow{EG}$+$\frac{1}{2}$$\overrightarrow{EH}$ | B. | $\frac{1}{5}$$\overrightarrow{EF}$+$\frac{1}{5}$$\overrightarrow{EG}$+$\frac{1}{5}$$\overrightarrow{EH}$ | C. | $\frac{1}{4}$$\overrightarrow{EF}$+$\frac{1}{4}$$\overrightarrow{EG}$+$\frac{1}{4}$$\overrightarrow{EH}$ | D. | $\frac{1}{3}$$\overrightarrow{EF}$+$\frac{1}{3}$$\overrightarrow{EG}$+$\frac{1}{3}$$\overrightarrow{EH}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | an=2n-1 | B. | an=(-1)n(1-2n) | C. | an=(-1)n(2n-1) | D. | an(-1)n+1(2n-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x>22% | B. | x<22% | C. | x=22% | D. | 以上都不對(duì) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com