【題目】已知函數(shù),.

1)求函數(shù)的單調(diào)區(qū)間;

2)若恒成立,求的最小值.

【答案】1)分類討論,見(jiàn)解析(2)見(jiàn)解析

【解析】

1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論的范圍,求出函數(shù)的單調(diào)區(qū)間即可;

2)設(shè),求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出的最小值,從而確定的最小值即可.

解:(1)函數(shù)定義域?yàn)?/span>.

,由,或

①當(dāng)時(shí),,上為增函數(shù),

,,上為減函數(shù),

,上為增函數(shù).

②當(dāng)時(shí),,,上為增函數(shù),

,上為增函數(shù).

③當(dāng)時(shí),,上為減函數(shù),

時(shí),,上為增函數(shù).

2,設(shè)

,

因?yàn)?/span>,令,得.

設(shè),由于上單遞增,

當(dāng)時(shí),;當(dāng)時(shí),,

所以存在唯一,使得,即.

當(dāng)時(shí),,所以上單調(diào)遞減;

當(dāng)時(shí),,所以上單調(diào)遞增.

當(dāng)時(shí),

,

因?yàn)?/span>恒成立,

當(dāng)時(shí),,所以上單調(diào)遞減;

當(dāng)時(shí),,所以上單調(diào)遞增.

當(dāng)時(shí),.

所以當(dāng),即,時(shí),.

所以,即.

.

設(shè),,

.

,解得:,

遞減,在遞增,

,時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,⊥底面,,,ADDCAP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).

(1)證明:BEDC;

(2)F為棱PC上一點(diǎn),滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)雙曲線的左焦點(diǎn)作圓的切線,切點(diǎn)為,延長(zhǎng)交雙曲線右支于點(diǎn).若線段的中點(diǎn)為為坐標(biāo)原點(diǎn),則的大小關(guān)系是(

A. B.

C. D. 無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】暑假期間,某旅行社為吸引中學(xué)生去某基地參加夏令營(yíng),推出如下收費(fèi)標(biāo)準(zhǔn):若夏令營(yíng)人數(shù)不超過(guò)30,則每位同學(xué)需交費(fèi)用600元;若夏令營(yíng)人數(shù)超過(guò)30,則營(yíng)員每多1人,每人交費(fèi)額減少10元(即:營(yíng)員31人時(shí),每人交費(fèi)590元,營(yíng)員32人時(shí),每人交費(fèi)580元,以此類推),直到達(dá)到滿額70人為止.

1)寫(xiě)出夏令營(yíng)每位同學(xué)需交費(fèi)用(單位:元)與夏令營(yíng)人數(shù)之間的函數(shù)關(guān)系式;

2)當(dāng)夏令營(yíng)人數(shù)為多少時(shí),旅行社可以獲得最大收入?最大收入是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,且

為等邊三角形,平面平面;點(diǎn)分別為的中點(diǎn).

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PQ為某公園的一條道路,一半徑為20米的圓形觀賞魚(yú)塘與PQ相切,記其圓心為O,切點(diǎn)為G.為參觀方便,現(xiàn)新修建兩條道路CA、CB,分別與圓O相切于D、E兩點(diǎn),同時(shí)與PQ分別交于A、B兩點(diǎn),其中C、O、G三點(diǎn)共線且滿足CA=CB,記道路CA、CB長(zhǎng)之和為

(1)①設(shè)∠ACO=,求出關(guān)于的函數(shù)關(guān)系式;②設(shè)AB=2x米,求出關(guān)于x的函數(shù)關(guān)系式

(2)若新建道路每米造價(jià)一定,請(qǐng)選擇(1)中的一個(gè)函數(shù)關(guān)系式,研究并確定如何設(shè)計(jì)使得新建道路造價(jià)最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)求實(shí)數(shù)的值;

(2)當(dāng)時(shí),函數(shù)存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù),若函數(shù)的圖像只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的方程是,直線交拋物線于兩點(diǎn)

(1)若弦AB的中點(diǎn)為,求弦AB的直線方程;

(2)設(shè),若,求證AB過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是自然對(duì)數(shù)的底數(shù),函數(shù)有零點(diǎn),且所有零點(diǎn)的和不大于6,則的取值范圍為______

查看答案和解析>>

同步練習(xí)冊(cè)答案