已知點(-3,-1)和(4,-6)在直線3x-2y-a=0的兩側(cè),則實數(shù)a的取值范圍為( 。
A、(-24,7)
B、(-∞,-24)∪(7,+∞)
C、(-7,24)
D、(-∞,-7)∪(24,+∞)
考點:直線的斜率
專題:直線與圓
分析:根據(jù)點(-3,-1)和(4,-6)在直線3x-2y-a=0的兩側(cè),可得(-9+2-a)(12+12-a)<0,解出即可.
解答: 解:∵點(-3,-1)和(4,-6)在直線3x-2y-a=0的兩側(cè),
∴(-9+2-a)(12+12-a)<0,
化為(a+7)(a-24)<0,
解得-7<a<24.
故選:C.
點評:本題考查了線性規(guī)劃的有關(guān)問題、一元二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c,若f(x1)=f(x2)(x1≠x2),則f(
x1+x2
2
)
=
 
(用a、b、c表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
1-cos200°
=( 。
A、-
2
cos100°
B、-
2
sin100°
C、
2
cos100°
D、
2
sin100°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對數(shù)lg(
3+
5
+
3-
5
)
的值為( 。
A、1
B、
1
2
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
-x2+x
的單調(diào)遞增區(qū)間為( 。
A、[0,1]
B、(-∞,
1
2
]
C、[
1
2
,1]
D、[0,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對定義域分別是Df、Dg的函數(shù)y=f (x)、y=g (x),規(guī)定:h(x)=
f(x)•g(x), 當(dāng)x∈Df且x∈Dg
 f(x) ,當(dāng)x∈Df且x∉Dg
 g(x) ,當(dāng)x∉Df且x∈Dg.

(1)若函數(shù)f (x)=
1
x-1
,g (x)=x2,寫出函數(shù)h(x)的解析式;
(2)求問題(1)中函數(shù)h(x)的值域;
(3)請設(shè)計一個定義域為R的函數(shù)y=f (x),及一個實常數(shù)a的值,使得f (x)•f (x+a)=x4+x2+1,并予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商品降價10%,經(jīng)過一段時間后恢復(fù)原價,需提價
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程ax2-2x+1=0的解集中有且僅有一個元素,則實數(shù)a的值組成的集合中的元素個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為1的兩個全等的等腰直角三角形,若該幾何體的所有頂點在同一球面上,則球的表面積是(  )
A、3π
B、2π
C、π
D、
2

查看答案和解析>>

同步練習(xí)冊答案