【題目】如圖,已知等邊△ABC中,E,F(xiàn)分別為AB,AC邊的中點(diǎn),N為BC邊上一點(diǎn),且CN= BC,將△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M為EF中點(diǎn).

(1)求證:平面A′MN⊥平面A′BF;
(2)求二面角E﹣A′F﹣B的余弦值.

【答案】
(1)證明:如圖所示,取BC的中點(diǎn)G,連接MG,則MG⊥EF,

∵平面A′EF⊥平面EFCB,平面A′EF∩平面EFCB=EF,

∴MG⊥平面A′EF,∴MG⊥A′M,又A′M⊥EF,

因此可以建立空間直角坐標(biāo)系.不妨設(shè)BC=4.

M(0,0,0),A′(0,0, ),N(﹣1, ,0),

B(2, ,0),F(xiàn)(﹣1,0,0).

=(0,0, ), =(﹣1, ,0),

=(1,0, ), =(3, ,0).

設(shè)平面A′MN的法向量為 =(x,y,z),

,即 ,

=

同理可得平面A′BF的法向量 =

=3﹣3+0=0,∴ ,

∴平面A′MN⊥平面A′BF


(2)解:由(1)可得平面A′BF的法向量 =

取平面EA′F的法向量 =(0,1,0).

則cos = = =- ,

由圖可知:二面角E﹣A′F﹣B的平面角為銳角,

∴二面角E﹣A′F﹣B的平面角的余弦值為


【解析】(1)如圖所示,取BC的中點(diǎn)G,連接MG,則MG⊥EF,利用面面與線面垂直的性質(zhì)與判定定理可得:MG⊥A′M,又A′M⊥EF,因此可以建立空間直角坐標(biāo)系.不妨設(shè)BC=4.只要證明平面法向量的夾角為直角即可證明平面A′MN⊥平面A′BF.(2)利用兩個(gè)平面的法向量的夾角即可得出.
【考點(diǎn)精析】本題主要考查了平面與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求適合下列條件的雙曲線的方程:

(1) 虛軸長(zhǎng)為12,離心率為;

(2) 焦點(diǎn)在x軸上,頂點(diǎn)間距離為6,漸近線方程為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M過C(1,-1),D(-1,1)兩點(diǎn),且圓心M在x+y-2=0上.

(1)求圓M的方程;

(2)設(shè)點(diǎn)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線ly=2x+2,若l與橢圓 的交點(diǎn)為A,B,點(diǎn)P為橢圓上的動(dòng)點(diǎn),則使△PAB的面積為 的點(diǎn)P的個(gè)數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】F1F2是雙曲線的兩個(gè)焦點(diǎn)

(1)若雙曲線上一點(diǎn)M到左焦點(diǎn)F1的距離等于7,求點(diǎn)M到右焦點(diǎn)F2的距離;

(2)若P是雙曲線左支上的點(diǎn),且|PF1|·|PF2|=32,試求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是圓 上任意一點(diǎn),點(diǎn)與圓心關(guān)于原點(diǎn)對(duì)稱.線段的中垂線與交于點(diǎn).

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)設(shè)點(diǎn),若直線軸且與曲線交于另一點(diǎn),直線與直線交于點(diǎn),證明:點(diǎn)恒在曲線上,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,過點(diǎn)的直線交拋物線于,兩點(diǎn),過點(diǎn)作準(zhǔn)線的垂線,垂足為,當(dāng)點(diǎn)坐標(biāo)為時(shí),為正三角形,則此時(shí)的面積為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某海礁A處有一風(fēng)暴中心,距離風(fēng)暴中心A正東方向200km的B處有一艘輪船,正以北偏西a(a為銳角)角方向航行,速度為40km/h.已知距離風(fēng)暴中心180km以內(nèi)的水域受其影響.

(1)若輪船不被風(fēng)暴影響,求角α的正切值的最大值?

(2)若輪船航行方向?yàn)楸逼?5°,求輪船被風(fēng)暴影響持續(xù)多少時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C: =1的右焦點(diǎn)F,過焦點(diǎn)F的直線l0⊥x軸,P(x0 , y0)(x0y0≠0)為C上任意一點(diǎn),C在點(diǎn)P處的切線為l,l與l0相交于點(diǎn)M,與直線l1:x=3相交于N.
(I) 求證;直線 =1是橢圓C在點(diǎn)P處的切線;
(Ⅱ)求證: 為定值,并求此定值;
(Ⅲ)請(qǐng)問△ONP(O為坐標(biāo)原點(diǎn))的面積是否存在最小值?若存在,請(qǐng)求出最小及此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案