5.某四棱錐的三視圖如圖所示,該四棱錐的表面積是( 。
A.32B.16+16$\sqrt{2}$C.48D.16+32$\sqrt{2}$

分析 由已知中的三視圖,可得四棱錐的底面棱長(zhǎng)為4,高為2,求出側(cè)高后,代入棱錐表面積公式,可得答案.

解答 解:由已知中的三視圖,可得四棱錐的底面棱長(zhǎng)為4,
故底面面積為:16,
棱錐的高為2,
故棱錐的側(cè)高為:$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
故棱錐的側(cè)面積為:4×$\frac{1}{2}$×4×$2\sqrt{2}$=16$\sqrt{2}$,
故棱錐的表面積為:16+16$\sqrt{2}$,
故選:B

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱柱的體積和表面積,棱錐的體積和表面積,簡(jiǎn)單幾何體的三視圖,難度基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x,y滿足線性約束條件$\left\{\begin{array}{l}y-x≤3\\ x+y≤5\\ y≥λ\end{array}\right.$,若z=x+4y的最大值與最小值之差為5,則實(shí)數(shù)λ的值為(  )
A.3B.$\frac{7}{3}$C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合M={x|x=2k+1,k∈Z},N={x|x=k+2,k∈Z},則.( 。
A.M=NB.M?NC.N?MD.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=2+tsinα\end{array}\right.(t$為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ
(1)求圓C的直角坐標(biāo)方程;
(2)若點(diǎn)P(1,2),設(shè)圓C與直線l交于點(diǎn)A、B,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)p:x<2,q:-2<x<2,則p是q成立的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{3x}{a}-2{x^2}+lnx$,其中a為常數(shù).
(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,梯形A1B1C1D1是一平面圖形ABCD的直觀圖(斜二測(cè)),若AD∥Oy,AB∥CD,A1B1=$\frac{3}{4}{C_1}{D_1}=3,{A_1}{D_1}$=1,則原平面圖形ABCD的面積是( 。
A.14.B.7C.$14\sqrt{2}$D.$7\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某中學(xué)有學(xué)生270人,其中一年級(jí)108人,二、三年級(jí)各81人,現(xiàn)要用抽樣方法抽取10人組成一個(gè)樣本.將學(xué)生按一、二、三年級(jí)依次同一編號(hào)為1,2,…,270.如果抽得號(hào)碼有如下四種情況:
①5,9,100,107,111,121,180,195,200,265;
②7,34,61,88,115,142,169,196,223,250;
③30,57,84,111,138,165,192,219,246,270;
④11,38,60,90,119,146,173,200,227,254.
則其中可能由分層抽樣、而不可能由系統(tǒng)抽樣得到的樣本是(  )
A.①②B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}的前n項(xiàng)和${S_n}=6n-{n^2}$,則數(shù)列 $\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前20項(xiàng)和等于$-\frac{4}{35}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案