分析:(1)求出f(x)的導(dǎo)數(shù),求得單調(diào)區(qū)間,得到極大值點(diǎn),再由條件求出g(x)的導(dǎo)數(shù),得到方程,解出即可;
(2)|f(x
1)-f(x
2)|<6|x
1-x
2|?f(x
1)-f(x
2)<6(x
2-x
1)?f(x
1)+6x
1<f(x
2)+6x
2,令h(x)=f(x)+6x,求出導(dǎo)數(shù),求出單調(diào)區(qū)間,即可得證;
(3)求出f(x)在[
,3]上的最值,運(yùn)用導(dǎo)數(shù)求得g(x)在[
,3]上的最值,討論①k>1時(shí),不等式
≤1恒成立,?k-1≥[f(x
1)-g(x
2)]
max?k≥[f(x
1)-g(x
2)]
max+1,②k<1時(shí),不等式
≤1恒成立,?k-1≤[f(x
1)-g(x
2)]
min?k≤[f(x
1)-g(x
2)]
min+1,列出不等式,解出求并集即可.
解答:
(1)解:由f′(x)=-2x+
=-
,
知當(dāng)0<x<1時(shí)f′(x)>0;
當(dāng)x>1時(shí)f′(x)<0;
∴f(x)在(0,1)上為增函數(shù),在(1,+∞)上為減函數(shù).
∴x=1為函數(shù)f(x)的極大值點(diǎn).
又函數(shù)f(x)=-x
2+2lnx與g(x)=x+
有相同極值點(diǎn),
∴x=1是函數(shù)g(x)的極值點(diǎn),
∵g′(x)=1-
.∴g′(a)=1-a=0,解得a=1.
經(jīng)檢驗(yàn),當(dāng)a=1時(shí),函數(shù)g(x)取到極小值,符合題意.
(2)證明:由(1)知函數(shù)f(x)在[2,3]上單調(diào)遞減,
不妨設(shè)x
1<x
2,∴|f(x
1)-f(x
2)|<6|x
1-x
2|?f(x
1)-f(x
2)<6(x
2-x
1)
?f(x
1)+6x
1<f(x
2)+6x
2,
令h(x)=f(x)+6x,
則h′(x)=-2x+
+6,因?yàn)閔′(x)在(2,3)上單調(diào)遞減,且h′(2)=-4+7=3>0
當(dāng)x∈(2,3)時(shí),h′(x)>0,
所以函數(shù)h(x)在[2,3]上單調(diào)遞增,∴h(x
1)<h(x
2),所以問(wèn)題得證.
(3)解:∵f(
)=-
-2,f(1)=-1,f(3)=-9+2ln3,
∵-9+2ln3<-
-2<-1,即 f(3)<f(
)<f(1),
∴任意x
1∈[
,3],f(x)
min=f(3)=-9+2ln3,f(x
1)
max=f(1)=-1
由(1)知g(x)=x
+,∴g′(x)=1-
.
當(dāng)x∈[
,1]時(shí),g′(x)<0;當(dāng)x∈(1,3]時(shí),g′(x)>0.
故g(x)在[
,1]為減函數(shù),在(1,3]上為增函數(shù).
∵g(
)=e
+,g(1)=2,g(3)=
,而 2<e+
<
,∴g(1)<g(
)<g(3),
∴任意x
2∈[
,3],g(x
2)
min=g(1)=2,g(x
2)
max=g(3)=
.
①當(dāng)k-1>0,即k>1時(shí),對(duì)于任意x
1,x
2∈[
,3],不等式
≤1恒成立,
?k-1≥[f(x
1)-g(x
2)]
max?k≥[f(x
1)-g(x
2)]
max+1
由于f(x
1)-g(x
2)≤f(1)-g(1)=-3,∴k≥-2又∵k>1,∴k>1.
②當(dāng)k-1<0,即k<1時(shí),對(duì)于任意x
1,x
2∈[
,3],不等式
≤1恒成立,
?k-1≤[f(x
1)-g(x
2)]
min?k≤[f(x
1)-g(x
2)]
min+1
∵f(x
1)-g(x
2)≥f(3)-g(3)=-9+2ln3-
=2ln3-
∴k
≤-+2ln3.又∵k<1,∴k
≤-+2ln3.
綜上,所求的實(shí)數(shù)k的取值范圍為(-∞,-
+2ln3]∪(1,+∞).