分析 設弦的兩端點分別為A(x1,y1),B(x2,y2),由AB的中點是P(8,1),知x1+x2=16,y1+y2=2,利用點差法能求出這條弦所在的直線的斜率.
解答 解:設弦的兩端點分別為A(x1,y1),B(x2,y2),
∵AB的中點是P(8,1),
∴x1+x2=16,y1+y2=2,
把A(x1,y1),B(x2,y2)代入雙曲線x2-4y2=4,
得x12-4y12=4,x22-4y22=4,
∴(x1+x2)(x1-x2)-4(y1-y2)(y1+y2)=0,
∴16(x1-x2)-8(y1-y2)=0,
∴k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=2.
故答案為:2.
點評 本題考查了直線與雙曲線的關系,特別是當直線與雙曲線相交,且已知中點坐標的情況下,用點差法可有效提高做題效率,做題時不妨用其它方法試試,比較不同解法之間的優(yōu)劣.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x=\frac{1}{2}x′}\\{x=y′}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=2x′}\\{y=y′}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{y=4x′}\\{y=y′}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2x′}\\{y=4y′}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com