用數(shù)學(xué)歸納法證明不等式++…+(n>1且n∈N)時,在證明n=k+1這一步時,需要證明的不等式是( )
A.++…+
B.++…++
C.++…++
D.++…+++
【答案】分析:把不等式++…+  中的n換成k+1,即得所求.
解答:解:當(dāng)n=k+1時,不等式++…+,
即 +
故選 D.
點(diǎn)評:本題考查數(shù)學(xué)歸納法,體現(xiàn)了換元的數(shù)學(xué)思想,注意式子的結(jié)構(gòu)特征,特別是首項(xiàng)和末項(xiàng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明不等式:
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
>1(n∈N*且n>1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
 (n∈N*),用數(shù)學(xué)歸納法證明不等式f(2n)>
n
2
時,f(2k+1)比f(2k)多的項(xiàng)數(shù)是
2k
2k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
24
的過程中,由“k推導(dǎo)k+1”時,不等式的左邊增加了( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
(n∈N*)成立,其初始值至少應(yīng)取
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明不等式2n>n2時,第一步需要驗(yàn)證n0=( 。⿻r,不等式成立.

查看答案和解析>>

同步練習(xí)冊答案