如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點.

(1)求證:BC⊥平面PAC;
(2)設(shè)QPA的中點,G為△AOC的重心,求證:QG∥平面PBC.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐PABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD.若E、F分別為PC、BD的中點,求證:

(1)EF∥平面PAD;
(2)EF⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求證:平面AEC⊥平面ABE;
(2)點F在BE上.若DE∥平面ACF,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在三棱柱ABC ­A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=.

(1)求證:平面A1BC⊥平面ACC1A1;
(2)如果D為AB的中點,求證:BC1∥平面A1CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在四棱錐PABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCDE、F分別是線段AB、BC的中點.

(1)證明:PFFD
(2)判斷并說明PA上是否存在點G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,求二面角APDF的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面為梯形,,,,平面平面,

(1)求證:平面
(2)求證:;
(3)是否存在點,到四棱錐各頂點的距離都相等?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知正方體棱長為2,、分別是、的中點.

(1)證明:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,⊥底面

(1)證明:平面平面;
(2)若二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

等邊三角形的邊長為3,點、分別是邊上的點,且滿足(如圖1).將△沿折起到△的位置,使二面角為直二面角,連結(jié)、 (如圖2).

(Ⅰ)求證:平面;
(Ⅱ)在線段上是否存在點,使直線與平面所成的角為?若存在,求出的長,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案