【題目】已知函數(shù),其圖象與軸交于不同兩點(diǎn),,且.
(1)求實(shí)數(shù)的取值范圍;
(2)證明:.
【答案】(1)(2)證明見解析
【解析】
(1)先變量分離得,再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,即得解;(2)先利用導(dǎo)數(shù)證明,再證明,不等式即得證.
(1)由,得.
令,則.
由,解得,所以在區(qū)間上單調(diào)遞增;
由,解得,所以在區(qū)間上單調(diào)遞減;
于是在處取得極小值,且.
又時(shí),,
由于要使的圖象與直線有兩個(gè)不同的交點(diǎn),
所以.
(2)由(1)知.
一方面,令,,
則,
又令,,
則.
易知在上單調(diào)遞增,所以,
則在上單調(diào)遞減,所以,于是,
所以在上單調(diào)遞增.則,即.
所以.
又在區(qū)間上單調(diào)遞增,所以,即.
另一方面,令,則,
易知在時(shí),取得最小值,所以,即.
,∴.
∵,∴方程有唯一正根,則.
又,在區(qū)間單調(diào)遞增,
所以根據(jù)零點(diǎn)存在定理,得在區(qū)間有唯一零點(diǎn).
所以,
又,②
①代入②,得,解得.
于是.
令,,則
又令,則.
注意到為減函數(shù),所以,
于是,從而為增函數(shù),所以,
故為減函數(shù),則,即.
所以,
又在區(qū)間上單調(diào)遞增,所以,即.
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知曲線,將曲線上的點(diǎn)向左平移一個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)軸伸長(zhǎng)到原來的2倍,得到曲線,又已知直線(是參數(shù)),且直線與曲線交于兩點(diǎn).
(I)求曲線的直角坐標(biāo)方程,并說明它是什么曲線;
(II)設(shè)定點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓貧困地區(qū)的孩子們過一個(gè)溫暖的冬天,某校陽光志愿者社團(tuán)組織“這個(gè)冬天不再冷”冬衣募捐活動(dòng),共有50名志愿者參與.志愿者的工作內(nèi)容有兩項(xiàng):①到各班做宣傳,倡議同學(xué)們積極捐獻(xiàn)冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實(shí)際情況,只參與其中的某一項(xiàng)工作.相關(guān)統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(1)如果用分層抽樣的方法從參與兩項(xiàng)工作的志愿者中抽取5人,再?gòu)倪@5人中選2人,那么“至少有1人是參與班級(jí)宣傳的志愿者”的概率是多少?
(2)若參與班級(jí)宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面是等腰梯形,,點(diǎn)為的中點(diǎn),以為邊作正方形,且平面平面.
(1)證明:平面平面.
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點(diǎn)。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出對(duì)農(nóng)村要堅(jiān)持精準(zhǔn)扶貧,至2020年底全面脫貧.現(xiàn)有扶貧工作組到某山區(qū)貧困村實(shí)施脫貧工作.經(jīng)摸底排查,該村現(xiàn)有貧閑農(nóng)戶100家,他們均從事水果種植,2017年底該村平均每戶年純收入為1萬元.扶貧工作組一方面請(qǐng)有關(guān)專家對(duì)果樹進(jìn)行品種改良,提高產(chǎn)量;另一方面,抽出部分農(nóng)戶從事水果包裝、銷售工作,其人數(shù)必須小于種植的人數(shù).從2018年初開始,該村抽出戶()從事水果包裝、銷售.經(jīng)測(cè)算,剩下從事水果種植農(nóng)戶的年純收入每戶平均比上一年提高,而從事包裝銷售農(nóng)戶的年純收入每戶平均為萬元(參考數(shù)據(jù):).
(1)至2020年底,為使從事水果種植農(nóng)戶能實(shí)現(xiàn)脫貧(每戶年均純收入不低于1萬5千元),則應(yīng)至少抽出多少戶從事包裝、銷售工作?
(2)至2018年底,該村每戶年均純收人能否達(dá)到1.355萬元?若能,請(qǐng)求出從事包裝、銷售的戶數(shù);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最大值;
(2)若函數(shù)與有相同極值點(diǎn).
①求實(shí)數(shù)的值;
②若對(duì)于(為自然對(duì)數(shù)的底數(shù)),不等式恒成立,
求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,設(shè).
(Ⅰ)若在處取得極值,且,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若時(shí)函數(shù)有兩個(gè)不同的零點(diǎn)、.
①求的取值范圍;②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和都是等差數(shù)列,.數(shù)列滿足.
(1)求的通項(xiàng)公式;
(2)證明:是等比數(shù)列;
(3)是否存在首項(xiàng)為1,公比為q的等比數(shù)列,使得對(duì)任意,都有成立?若存在,求出q的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com