精英家教網 > 高中數學 > 題目詳情
若直線x-2y+1=0與圓x2+y2-4x+2y-5=0交于A,B兩點,O是坐標原點,則
OA
OB
=
 
考點:平面向量數量積的運算
專題:平面向量及應用
分析:直線方程和圓的方程聯(lián)立形成方程組,解方程組即得A,B的坐標,從而求出
OA
,
OB
的坐標,進行數量積的坐標運算即可.
解答: 解:將x=2y-1帶入x2+y2-4x+2y-5=0中并整理得:y2-2y=0;
∴解得y=0,或2,x=-1,或3;
∴A(-1,0),B(3,2);
OA
OB
=(-1,0)•(3,2)=-3

故答案為:-3.
點評:考查直線和圓的位置關系,通過解直線方程和圓的方程形成的方程組來求直線和圓的交點坐標的方法,由點的坐標求向量的坐標,以及向量數量積的坐標運算.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數y=g(x)與f(x)=loga(x+1)(0<a<1)的圖象關于原點對稱
(Ⅰ)求y=g(x)的解析式;
(Ⅱ)函數F(x)=f(x)+g(x),解不等式F(t2-2t)+F(2t2-1)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

在四棱錐P-ABCD中,PD⊥面ABCD,底面ABCD為菱形,且PD=DC=2,∠ABC=60°,
(1)求證:AC⊥面 PDB;
(2)求直線PD與平面PAC所成角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓E經過A(1,
3
2
),一個焦點坐標為(-1,0),求以P(1,
3
2
)為中點的弦所在直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

設x,y滿足條件
x-y+5≥0
x+y≥0
x≤3

(1)求u=x2+y2的最大值與最小值;
(2)求v=
y
x-5
的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

方程
(x-3)2+y2
+
(x+3)2+y2
=10化簡的結果是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

對于直線ax+y-a=0(a≠0),以下說法正確的是( 。
A、恒過定點,且斜率和縱截距相等
B、恒過定點,且橫截距恒為定值
C、恒過定點,且與y軸平行的直線
D、恒過定點,且與x軸平行的直線

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓錐曲線C:
x=2cosα
y=
3
sinα
(α為參數)和定點A(0,
3
),F(xiàn)1、F2是此圓錐曲線的左、右焦點,以原點O為極點,以x軸的正半軸為極軸建立極坐標系.
(1)求直線AF2的直角坐標方程;
(2)經過點F1且與直線AF2垂直的直線l交此圓錐曲線于M、N兩點,求|MF1|-|NF1|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-2ax,g(x)=-x2-1,若函數f(x)與g(x)有兩條公切線,且由四個切點組成的多邊形的周長為6.則a 的值為
 

查看答案和解析>>

同步練習冊答案