若直線x-2y+1=0與圓x2+y2-4x+2y-5=0交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn),則
OA
OB
=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:直線方程和圓的方程聯(lián)立形成方程組,解方程組即得A,B的坐標(biāo),從而求出
OA
OB
的坐標(biāo),進(jìn)行數(shù)量積的坐標(biāo)運(yùn)算即可.
解答: 解:將x=2y-1帶入x2+y2-4x+2y-5=0中并整理得:y2-2y=0;
∴解得y=0,或2,x=-1,或3;
∴A(-1,0),B(3,2);
OA
OB
=(-1,0)•(3,2)=-3

故答案為:-3.
點(diǎn)評(píng):考查直線和圓的位置關(guān)系,通過解直線方程和圓的方程形成的方程組來求直線和圓的交點(diǎn)坐標(biāo)的方法,由點(diǎn)的坐標(biāo)求向量的坐標(biāo),以及向量數(shù)量積的坐標(biāo)運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=g(x)與f(x)=loga(x+1)(0<a<1)的圖象關(guān)于原點(diǎn)對(duì)稱
(Ⅰ)求y=g(x)的解析式;
(Ⅱ)函數(shù)F(x)=f(x)+g(x),解不等式F(t2-2t)+F(2t2-1)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,PD⊥面ABCD,底面ABCD為菱形,且PD=DC=2,∠ABC=60°,
(1)求證:AC⊥面 PDB;
(2)求直線PD與平面PAC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E經(jīng)過A(1,
3
2
),一個(gè)焦點(diǎn)坐標(biāo)為(-1,0),求以P(1,
3
2
)為中點(diǎn)的弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足條件
x-y+5≥0
x+y≥0
x≤3

(1)求u=x2+y2的最大值與最小值;
(2)求v=
y
x-5
的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程
(x-3)2+y2
+
(x+3)2+y2
=10化簡的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于直線ax+y-a=0(a≠0),以下說法正確的是( 。
A、恒過定點(diǎn),且斜率和縱截距相等
B、恒過定點(diǎn),且橫截距恒為定值
C、恒過定點(diǎn),且與y軸平行的直線
D、恒過定點(diǎn),且與x軸平行的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐曲線C:
x=2cosα
y=
3
sinα
(α為參數(shù))和定點(diǎn)A(0,
3
),F(xiàn)1、F2是此圓錐曲線的左、右焦點(diǎn),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線AF2的直角坐標(biāo)方程;
(2)經(jīng)過點(diǎn)F1且與直線AF2垂直的直線l交此圓錐曲線于M、N兩點(diǎn),求|MF1|-|NF1|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax,g(x)=-x2-1,若函數(shù)f(x)與g(x)有兩條公切線,且由四個(gè)切點(diǎn)組成的多邊形的周長為6.則a 的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案