18.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知csinA=-$\sqrt{3}$acosC,c=$\sqrt{3}$
(Ⅰ)求角C;
(Ⅱ)求△ABC面積的最大值.

分析 (Ⅰ)由正弦定理化簡已知可得:sinCsinA=-$\sqrt{3}$sinAcosC,結(jié)合sinA≠0,利用同角三角函數(shù)基本關(guān)系式可求tanC=-$\sqrt{3}$,結(jié)合范圍C∈(0,π),可求C的值.
(Ⅱ)由余弦定理,基本不等式可求ab≤1,進而利用三角形面積公式即可計算得解△ABC面積的最大值.

解答 (本題滿分為12分)
解:(Ⅰ)∵csinA=-$\sqrt{3}$acosC,c=$\sqrt{3}$,
∴由正弦定理可得:sinCsinA=-$\sqrt{3}$sinAcosC,
∵A為三角形內(nèi)角,sinA≠0,
∴sinC=-$\sqrt{3}$cosC,可得:tanC=-$\sqrt{3}$,
∵C∈(0,π),
∴C=$\frac{2π}{3}$…5分
(Ⅱ)由余弦定理c2=a2+b2-2abcosC,可得:3=a2+b2+ab,
∴a2+b2=3-ab≥2ab,可得:ab≤1,當且僅當a=b時等號成立,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\frac{\sqrt{3}}{4}$,當且僅當a=b時等號成立,即△ABC面積的最大值為$\frac{\sqrt{3}}{4}$…12分

點評 本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,余弦定理,基本不等式,三角形面積公式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,-1].
(1)求m的值;
(2)若a,b,c∈R,且$\frac{1}{{a}^{2}}$+$\frac{4}{^{2}}$+$\frac{9}{{c}^{2}}$=m,求證:a2+b2+c2≥36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a>0,b>0,M=$\sqrt{a}$+$\sqrt$,N=$\sqrt{a+b}$.則( 。
A.M>NB.M=NC.M<ND.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.把平面內(nèi)兩條直線的四種位置關(guān)系:①平行;②垂直;③相交;④斜交.分別填入圖中的M,N,E,F(xiàn)中,順序較為恰當?shù)氖牵ā 。?table class="qanwser">A.①②③④B.①④②③C.①③②④D.②①④③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若關(guān)于x的不等式ax2+bx+2<0的解集為(-∞,-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞),則a-b的值是( 。
A.-14B.-12C.12D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)(2-x)6=a0+a1(1+x)+a2(1+x)2+…+a6(1+x)6,則a4等于135.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實數(shù)x,y滿足$\left\{\begin{array}{l}y≤2\\ x+y≥-1\\ x-y≤1\end{array}\right.$,則z=3x+y的最大值為( 。
A.-7B.-3C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知公比不為1的等比數(shù)列{an}的前n項和為Sn,滿足a1=1,且a2,a4,a3成等差數(shù)列,則$\frac{{S}_{6}}{{S}_{3}}$=( 。
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.$\frac{9}{8}$D.-$\frac{9}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在梯形ABCD中,AB∥CD,AB=3,AD=2,CD=1,M為AD的中點,若$\overrightarrow{AB}$•$\overrightarrow{AD}$=4,則$\overrightarrow{AC}$•$\overrightarrow{BM}$=$-\frac{11}{3}$.

查看答案和解析>>

同步練習(xí)冊答案