10.函數(shù)f(x)=$\frac{1}{\sqrt{1-(lo{g}_{2}(cosx))^{2}}}$的定義域?yàn)?(2kπ-\frac{π}{3},2kπ+\frac{π}{3})(k∈Z)$.

分析 由解析式列出不等式組,化簡(jiǎn)后由余弦函數(shù)的性質(zhì)求出解集,可得函數(shù)的定義域.

解答 解:要使函數(shù)有意義,則$\left\{\begin{array}{l}{cosx>0}\\{1-(lo{g}_{2}(cosx))^{2}>0}\end{array}\right.$,
解得$\frac{1}{2}<cosx≤1$,
則$2kπ-\frac{π}{3}<x<2kπ+\frac{π}{3}(k∈Z)$,
所以函數(shù)的定義域是$(2kπ-\frac{π}{3},2kπ+\frac{π}{3})(k∈Z)$,
故答案為:$(2kπ-\frac{π}{3},2kπ+\frac{π}{3})(k∈Z)$.

點(diǎn)評(píng) 本題考查函數(shù)定義域及其求法,以及余弦函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知命題甲是“{x|$\frac{{x}^{2}+x}{x-1}$≥0}”,命題乙是“{x|log3(2x+1)≤0}”,則甲是乙的必要不充分條件.(從充分不必要、必要不充分、充要、既不充分也不必要中選填)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.由某類事物的部分對(duì)象具有某些特征,推出該類事物的全部對(duì)象都具有這些特征的推理叫(  )
A.合情推理B.演繹推理C.類比推理D.歸納推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知F1(-4,0),F(xiàn)2(4,0)為橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的兩個(gè)焦點(diǎn),P在橢圓上,且△PF1F2的面積為$3\sqrt{3}$,則cos∠F1PF2=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)扇形的半徑長(zhǎng)為2,圓心角為45°,則扇形的面積是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$a={(\frac{1}{3})}^{-3},b={(0.3)}^{2},c={log}_{\frac{1}{2}}3$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行下面的程度框圖,若輸出的值為-5,則判斷框中可以填( 。
A.z>10B.z≤10C.z>20D.z≤20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x∈R|x>$\sqrt{π}$),π為圓周率,則(  )
A.2∈AB.2∉AC.2>AD.2?A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{x^2}{m}-\frac{y^2}{8}=1$的離心率為$\sqrt{5}$,則實(shí)數(shù)m的值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案