【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),以為極點(diǎn), 軸的正半軸建立極坐標(biāo)系,曲線是圓心在極軸上且經(jīng)過(guò)極點(diǎn)的圓,射線與曲線交于點(diǎn)

)求曲線的普通方程及的直角坐標(biāo)方程;

)在極坐標(biāo)系中, 是曲線的兩點(diǎn),求的值.

【答案】(1), .(2)

【解析】試題分析:題設(shè)給出了曲線的參數(shù)方程,利用消去參數(shù)就能得到的普通方程,它為橢圓方程.對(duì)于曲線,題設(shè)只給出了圓心的位置和圓上一點(diǎn),根據(jù)它們可以到圓心的坐標(biāo)和半徑,從而可得圓的直角坐標(biāo)方程.在(2)中,因?yàn)?/span>兩點(diǎn)的極角相差,故先求出的極坐標(biāo)方程,得到極徑與極角的關(guān)系,即可求出和為.

解析:(1) 曲線的參數(shù)方程為為參數(shù)),則普通方程為,

曲線是圓心在極軸上且經(jīng)過(guò)極點(diǎn)的圓,射線與曲線交于點(diǎn),所以曲線在直角坐標(biāo)系中的圓心為,半徑為,其普通方程為.

(2)曲線的極坐標(biāo)方程為,所以,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程選講

在直角坐標(biāo)系中,曲線C1的參數(shù)方程為(a為參數(shù)),以原點(diǎn)O為極點(diǎn),

以x軸正半軸為極軸,建立極坐標(biāo)系,曲 線C2的極坐標(biāo)方程為

(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程.

(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年全國(guó)數(shù)學(xué)奧賽試行改革:在高二一年中舉行5次全區(qū)競(jìng)賽,學(xué)生如果其中2次成績(jī)達(dá)全區(qū)前20名即可進(jìn)入省隊(duì)培訓(xùn),不用參加其余的競(jìng)賽,而每個(gè)學(xué)生最多也只能參加5次競(jìng)賽.規(guī)定:若前4次競(jìng)賽成績(jī)都沒有達(dá)全區(qū)前20名,則第5次不能參加競(jìng)賽.假設(shè)某學(xué)生每次成績(jī)達(dá)全區(qū)前20名的概率都是,每次競(jìng)賽成績(jī)達(dá)全區(qū)前20名與否互相獨(dú)立.

(1)求該學(xué)生進(jìn)入省隊(duì)的概率.

(2)如果該學(xué)生進(jìn)入省隊(duì)或參加完5次競(jìng)賽就結(jié)束,記該學(xué)生參加競(jìng)賽的次數(shù)為,求的分布列及的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)的快速發(fā)展,民用汽車的保有量也迅速增長(zhǎng).機(jī)動(dòng)車保有量的發(fā)展影響到環(huán)境質(zhì)量、交通安全、道路建設(shè)等諸多方面.在我國(guó),尤其是大中型城市,機(jī)動(dòng)車已成為城市空氣污染的重要來(lái)源.因此,合理預(yù)測(cè)機(jī)動(dòng)車保有量是未來(lái)進(jìn)行機(jī)動(dòng)車污染防治規(guī)劃、道路發(fā)展規(guī)劃等的重要前提.從2012年到2016年,根據(jù)“云南省某市國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)”中公布的數(shù)據(jù),該市機(jī)動(dòng)車保有量數(shù)據(jù)如表所示.

年份

2012

2013

2014

2015

2016

年份代碼

1

2

3

4

5

機(jī)動(dòng)車保有量(萬(wàn)輛)

169

181

196

215

230

(1)在圖所給的坐標(biāo)系中作出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;

(2)建立機(jī)動(dòng)車保有量關(guān)于年份代碼的回歸方程;

(3)按照當(dāng)前的變化趨勢(shì),預(yù)測(cè)2017年該市機(jī)動(dòng)車保有量.

附注:回歸直線方程中的斜率和截距的最小二乘估計(jì)公式分別為:

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定一個(gè)數(shù)列{an},在這個(gè)數(shù)列里,任取m(m≥3,mN*)項(xiàng),并且不改變它們?cè)跀?shù)列{an}中的先后次序,得到的數(shù)列稱為數(shù)列{an}的一個(gè)m階子數(shù)列.已知數(shù)列{an}的通項(xiàng)公式為an (nN*a為常數(shù)),等差數(shù)列a2a3,a6是數(shù)列{an}的一個(gè)3階子數(shù)列

1)求a的值;

2)等差數(shù)列b1,b2,bm{an}的一個(gè)m (m≥3,mN*) 階子數(shù)列,且b1 (k為常數(shù),kN*k≥2),求證:mk1;

3等比數(shù)列c1,c2,,cm{an}的一個(gè)m (m≥3mN*) 階子數(shù)列,

求證:c1c2cm≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,bc,滿足

(1)求角C的大小;

(2)設(shè)函數(shù)f(x)=cos(2xC),將f(x)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分13分)已知?jiǎng)訄A過(guò)定點(diǎn)且與軸截得的弦的長(zhǎng)為

)求動(dòng)圓圓心的軌跡的方程;

)已知點(diǎn),動(dòng)直線和坐標(biāo)軸不垂直,且與軌跡相交于兩點(diǎn),試問:在軸上是否存在一定點(diǎn),使直線過(guò)點(diǎn),且使得直線,,的斜率依次成等差數(shù)列?若存在,請(qǐng)求出定點(diǎn)的坐標(biāo);否則,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列為遞增的等比數(shù)列,

數(shù)列滿足

(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)求證: 是等差數(shù)列;

(Ⅲ)設(shè)數(shù)列滿足,且數(shù)列的前項(xiàng)和,并求使得對(duì)任意都成立的正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是邊長(zhǎng)為的正方形,平面,,,與平面所成角為

Ⅰ)求證:平面

Ⅱ)求二面角的余弦值.

Ⅲ)設(shè)點(diǎn)是線段上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)的位置,使得平面,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案