【題目】關(guān)于x的實(shí)系數(shù)方程有四個(gè)不同的根,若這四個(gè)根在復(fù)平面上對(duì)應(yīng)的點(diǎn)共圓,則m的取值范圍是(

A.B.C.D.

【答案】D

【解析】

根據(jù)條件分別設(shè)四個(gè)不同的解所對(duì)應(yīng)的點(diǎn)為ABCD,討論根的判別式,根據(jù)圓的對(duì)稱性得到相應(yīng)判斷.

解:由已知x24x+50的解為,設(shè)對(duì)應(yīng)的兩點(diǎn)分別為A,B

A2,1),B2,﹣1),

設(shè)x2+2mx+m0的解所對(duì)應(yīng)的兩點(diǎn)分別為C,D,記為Cx1y1),Dx2y2),

1)當(dāng)△<0,即0m1時(shí),的根為共軛復(fù)數(shù),必有C、D關(guān)于x軸對(duì)稱,又因?yàn)?/span>A、B關(guān)于x軸對(duì)稱,且顯然四點(diǎn)共圓;

2)當(dāng)△>0,即m1m0時(shí),此時(shí)Cx1,0),Dx2,0),且=﹣m,

故此圓的圓心為(﹣m0),

半徑

又圓心O1A的距離O1A,

解得m=﹣1,

綜上:m01)∪{1}.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,圖中直棱柱的底面是菱形,其中.又點(diǎn)分別在棱上運(yùn)動(dòng),且滿足:,.

1)求證:四點(diǎn)共面,并證明∥平面.

2)是否存在點(diǎn)使得二面角的余弦值為?如果存在,求出的長(zhǎng);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在區(qū)間上存在零點(diǎn),則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)若a0時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

2)若函數(shù)x1時(shí)取極大值,求實(shí)數(shù)a的取值范圍;

3)設(shè)函數(shù)的零點(diǎn)個(gè)數(shù)為m,試求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線,過直線上一點(diǎn)作直線交拋物線,兩點(diǎn),且點(diǎn)中點(diǎn)、作直線軸于點(diǎn)

1)求點(diǎn)的坐標(biāo);

2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B兩地相距100公里,兩地政府為提升城市的抗疫能力,決定在AB之間選址P點(diǎn)建造儲(chǔ)備倉(cāng)庫(kù),共享民生物資,當(dāng)點(diǎn)P在線段AB的中點(diǎn)C時(shí),建造費(fèi)用為2000萬(wàn)元,若點(diǎn)P在線段AC上(不含點(diǎn)A),則建造費(fèi)用與P、A之間的距離成反比,若點(diǎn)P在線段CB上(不含點(diǎn)B),則建造費(fèi)用與PB之間的距離成反比,現(xiàn)假設(shè)P、A之間的距離為x千米A地所需該物資每年的運(yùn)輸費(fèi)用為萬(wàn)元,B地所需該物資每年的運(yùn)輸費(fèi)用為萬(wàn)元,表示建造倉(cāng)庫(kù)費(fèi)用,表示兩地物資每年的運(yùn)輸總費(fèi)用(單位:萬(wàn)元).

1)求函數(shù)的解析式;

2)若規(guī)劃倉(cāng)庫(kù)使用的年限為,,求的最小值,并解釋其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)無(wú)窮數(shù)列的前項(xiàng)和為,已知,

(1)求的值;

(2)求數(shù)列的通項(xiàng)公式;

(3)是否存在數(shù)列的一個(gè)無(wú)窮子數(shù)列,使對(duì)一切均成立?若存在,請(qǐng)寫出數(shù)列的所有通項(xiàng)公式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,,且.

1)證明:.

2)若,試在棱上確定一點(diǎn),使與平面所成角的正弦值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦點(diǎn)在軸上,左右頂點(diǎn)分別是,以上的弦異于)為直徑作圓恰好過,設(shè)直線的斜率為.

1)若,且的面積為,求的方程.

2)若,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案