【題目】已知圓C的方程:x2+y2﹣4x﹣6y+m=0,若圓C與直線a:x+2y﹣3=0相交于M、N兩點(diǎn),且|MN|=2
(1)求m的值;
(2)是否存在直線l:x﹣y+c=0,使得圓上有四點(diǎn)到直線l的距離為 ,若存在,求出c的范圍;若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)解:方程x2+y2﹣4x﹣6y+m=0配方為(x﹣2)2+(y﹣3)2=13﹣m.

∵此方程表示圓,

∴13﹣m>0,即m<13.r= ,

圓C與直線a:x+2y﹣3=0相交于M、N兩點(diǎn),且|MN|=2

圓的圓心到直線的距離為:d= =

可得

即:5=13﹣m﹣3,解得m=5


(2)解:(x﹣2)2+(y﹣3)2=8.圓的圓心(2,3),半徑為2

直線l:x﹣y+c=0,使得圓上有四點(diǎn)到直線l的距離為 ,

則圓心C(2,3)到直線l:x﹣y+c=0的距離為: = ,

可得:2 ,

解得﹣2<c<4


【解析】(1)由方程x2+y2﹣4x﹣6y+m=0配方為(x﹣2)2+(y﹣3)2=13﹣m.由于此方程表示圓,可得13﹣m>0,解出m的范圍,利用弦心距與半徑半弦長(zhǎng)的關(guān)系,求解m即可.(2)求出圓心與半徑,利用半徑與圓的圓心到直線的距離的差大于 ,列出不等式求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,過(guò)點(diǎn)作直線交圓兩點(diǎn),分別過(guò)兩點(diǎn)作圓的切線,當(dāng)兩條切線相交于點(diǎn)時(shí),則點(diǎn)的軌跡方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某市201731日至16日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于表示空氣重度污染.

(1)若該人隨機(jī)選擇3月1日至3月14日中的某一天到達(dá)該市,到達(dá)后停留天(到達(dá)當(dāng)日算天),求此人停留期間空氣重度污染的天數(shù)為天的概率;

(2)若該人隨機(jī)選擇3月7日至3月12日中的天到達(dá)該市,求這天中空氣質(zhì)量恰有天是重度污染的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=3sin(2x+ )的圖象為C,關(guān)于函數(shù)f(x)及其圖象的判斷如下: ①圖象C關(guān)于點(diǎn)( ,0)對(duì)稱;
②圖象C關(guān)于直線x= 對(duì)稱;
③由圖象C向右平移 個(gè)單位長(zhǎng)度可以得到y(tǒng)=3sin2x的圖象;
④函數(shù)f(x)在區(qū)間(﹣ )內(nèi)是減函數(shù);
⑤函數(shù)|f(x)+1|的最小正周期為
其中正確的結(jié)論序號(hào)是 . (把你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過(guò), 兩點(diǎn),且圓心在直線.

1)求圓的方程;

2)若直線過(guò)點(diǎn)且被圓截得的線段長(zhǎng)為,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓經(jīng)過(guò)不同的三點(diǎn)在第三象限),線段的中點(diǎn)在直線上.

(Ⅰ)求橢圓的方程及點(diǎn)的坐標(biāo);

(Ⅱ)設(shè)點(diǎn)是橢圓上的動(dòng)點(diǎn)(異于點(diǎn)且直線分別交直線兩點(diǎn),問(wèn)是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三角形ABC中,分別根據(jù)下列條件解三角形,其中有兩個(gè)解的是(
A.a=8b=16A=30°
B.a=25b=30A=150°
C.a=30b=40A=30°
D.a=72b=60A=135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,側(cè)面為矩形, , 的中點(diǎn), 交于點(diǎn) 側(cè)面.

(1)證明: ;

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:(x﹣1)2+y2=4
(1)求過(guò)點(diǎn)P(3,3)且與圓C相切的直線l的方程;
(2)已知直線m:x﹣y+1=0與圓C交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案