【題目】如圖,已知橢圓經過不同的三點在第三象限),線段的中點在直線上.
(Ⅰ)求橢圓的方程及點的坐標;
(Ⅱ)設點是橢圓上的動點(異于點且直線分別交直線于兩點,問是否為定值?若是,求出定值;若不是,請說明理由.
【答案】(1);(2).
【解析】試題分析:(1)點的坐標代入橢圓的方程就可求得方程,設點的坐標,根據條件可得點的坐標代入橢圓方程,BC中點坐標代入直線的方程,兩方程聯立可求點的坐標;(2)設,根據三點共線,用點P的坐標表示,同理用點P的坐標表示。再求為定值,所以。
試題解析:(Ⅰ)由點在橢圓上,得解得所以橢圓的方程為………………………3分
由已知,求得直線的方程為從而(1)
又點在橢圓上,故(2)
由(1)(2)解得(舍去)或從而
所以點的坐標為………………………………………6分
(Ⅱ)設
因三點共線,故整理得
因三點共線,故整理得……………10分
因點在橢圓上,故,即
從而
所以為定值. ………………………15分
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知cosA= ,b=5c.
(1)求sinC;
(2)若△ABC的面積S= sinBsinC,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“五點法”畫函數f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期內的圖象時,列表并填入了部分數據,如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 3 | 0 |
(1)請將上表空格中的數據在答卷的相應位置上,并求函數f(x)的解析式;
(2)若y=f(x)的圖象上所有點向左平移 個單位后對應的函數為g(x),求當x∈[﹣ , ]時,函數y=g(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C的方程:x2+y2﹣4x﹣6y+m=0,若圓C與直線a:x+2y﹣3=0相交于M、N兩點,且|MN|=2 .
(1)求m的值;
(2)是否存在直線l:x﹣y+c=0,使得圓上有四點到直線l的距離為 ,若存在,求出c的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從參加某次高中英語競賽的學生中抽出100名,將其成績整理后,繪制頻率分布直方圖(如圖所示).其中樣本數據分組區(qū)間為: , , , , , .
(Ⅰ)試求圖中的值,并計算區(qū)間上的樣本數據的頻率和頻數;
(Ⅱ)試估計這次英語競賽成績的眾數、中位數及平均成績(結果精確到).
注:同一組數據用該組區(qū)間的中點值作為代表
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓(a>b>0)的離心率,過點和的直線與原點的距離為.
(1)求橢圓的方程.
(2)已知定點,若直線與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系的x軸的正半軸重合,且兩個坐標系的單位長度相同.已知直線l的參數方程為(t為參數),曲線C的極坐標方程為.
(Ⅰ)若直線l的斜率為-1,求直線l與曲線C交點的極坐標;
(Ⅱ)若直線l與曲線C相交弦長為,求直線l的參數方程(標準形式).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com